##plugins.themes.bootstrap3.article.main##

This research evaluates of the electrochemical behavior of steel bars of the AISI 316 and AISI 1018 embedded in sustainable concrete with partial replacement of CPC 30R by Sugar Cane Bagasse Ash (SCBA) and Silica Fume (SF). The electrochemical techniques used to evaluate the corrosion were half-cell potential or Ecorr -ASTM C-876-15- and the Linear Polarization Resistance Technique (LPR) - ASTM G59-. Ecorr and Icorr results indicate after more than 300 days of exposure to the marine environment (3.5% NaCl solution), a high resistance of AISI 316 steel, with Ecorr values lower than -200 mV indicating a 10% probability of corrosion, and a level of negligible corrosion, with values less than 0.1 µA/cm2 in the three mixtures, with sustainable concrete values slightly lower. The results indicate a resistance of more of almost 100 times greater than AISI 316 steel compared to the results obtained in AISI 1018 steel.

Downloads

Download data is not yet available.

References

  1. O. Troconis de Rincón et. al., (2016). Reinforced Concrete Durability in Marine Environments DURACON Project: Long-Term Exposure. Corrosion, 72:6, pp. 824-833.
     Google Scholar
  2. M. Criado, D.M. Bastidas, S. Fajardo, A. Fernández-Jiménez, J.M. Bastidas. (2011). Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. Cement and Concrete Composites, 33, pp. 644-652.
     Google Scholar
  3. G. Santiago-Hurtado, M.A. Baltazar-Zamora, R. Galván-Martínez, L. D. López L, F. Zapata G, P- Zambrano, C. Gaona-Tiburcio, F. Almeraya-Calderón. (2016). Electrochemical Evaluation of Reinforcement Concrete Exposed to Soil Type SP Contaminated with Sulphates. International Journal of Electrochemical Science, 11:6, pp. 4850-4864.
     Google Scholar
  4. D.M. Bastidas, M. Criado, S. Fajardo, A. La Iglesia, J.M. Bastidas. (2015). Corrosion inhibition mechanism of phosphates for early-age reinforced mortar in the presence of chlorides. Cement and Concrete Composites, 61, pp. 1-6.
     Google Scholar
  5. M.A. Baltazar-Zamora, G. Santiago-Hurtado, V.M. Moreno L, R. Croche B, M. de la Garza, F. Estupiñan L, P. Zambrano R., C. Gaona-Tiburcio. (2016). Electrochemical Behaviour of Galvanized Steel Embedded in Concrete Exposed to Sand Contaminated with NaCl. International Journal of Electrochemical Science, 11:12, pp. 10306-10319.
     Google Scholar
  6. G. Santiago-Hurtado, M.A. Baltazar-Zamora, J. Olguín-Coca, L. D. López L, R. Galván-Martínez, A. Ríos-Juárez, C. Gaona-Tiburcio, F. Almeraya-Calderón. (2016). Electrochemical Evaluation of a Stainless Steel as Reinforcement in Sustainable Concrete Exposed to Chlorides. International Journal of Electrochemical Science, 11:4, pp. 2994-3006.
     Google Scholar
  7. M.A. Baltazar-Zamora et. al. (2012). Efficiency of Galvanized Steel Embedded in Concrete Previously Contaminated with 2, 3 and 4% of NaCl. International Journal of Electrochemical Science, 7:4, pp. 2997-3007.
     Google Scholar
  8. M.K. Yashwanth, B.G. Naresh Kumar, D.S. Sandeep Kumar. (2019). Potential of Bagasse Ash as Alternative Cementitious Material in Recycled Aggregate Concrete. International Journal of Innovative Technology and Exploring Engineering, 8:11, pp. 271-275.
     Google Scholar
  9. A. Landa-Gómez, R. Croche B, S. Márquez M, R. Villegas A, H.A. Ariza-Figueroa, F.H. Estupiñán-López, C. Gaona-Tiburcio, F. Almeraya-Calderón, M.A. Baltazar-Zamora. (2018). Corrosion Behavior 304 and 316 Stainless Steel as Reinforcement in Sustainable Concrete Based on Sugar Cane Bagasse Ash Exposed to Na2SO4. ECS Transactions, 84:1, pp. 179-188.
     Google Scholar
  10. O. Ojeda-Farías, J.M. Mendoza-Rangel, M.A. Baltazar-Zamora. (2018). Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. Revista ALCONPAT, 8:2, pp. 194-208.
     Google Scholar
  11. Aldo Landa-Gómez, R. Croche B, O.M. López Yza, R. Galván-Martínez, J.A. Cabral-Miramontes, C. Gaona Tiburcio, F. Almeraya, Miguel Angel Baltazar-Zamora. (2018). Corrosion Behavior of AISI 316 Stainless Steel as Reinforcement in Ternary Sustainable Concrete Based on Scba-SF Exposed in Seawater. ECS Meeting Abstracts, MA2018-02, pp. 584.
     Google Scholar
  12. ACI. Provision of mixtures, normal concrete, heavy and massive ACI 211.1, p. 29. Ed. IMCYC, México (2004).
     Google Scholar
  13. ASTM C29 / C29M–07–Standard Test Method for Bulk Density (“Unit Weight”) and Voids in 412 Aggregate; ASTM International, West Conshohocken, PA, 2007, www.astm.org
     Google Scholar
  14. ASTM C33/C33M–16e1–Standard Specification for Concrete Aggregates; ASTM International, 414 West Conshohocken, PA, 2016, www.astm.org
     Google Scholar
  15. ASTM C127–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of 416 Coarse Aggregate; ASTM International, West Conshohocken, PA, 2015, www.astm.org
     Google Scholar
  16. ASTM C128–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of 418 Fine Aggregate; ASTM International, West Conshohocken, PA, 2015, www.astm.org
     Google Scholar
  17. ASTM C136 / C136M –14–Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates; 420 ASTM International, West Conshohocken, PA, 2014, www.astm.org
     Google Scholar
  18. NMX-C-156-ONNCCE-2010: Determinación del revenimiento en el concreto fresco. ONNCCE S.C., México, (2010).
     Google Scholar
  19. ASTM C 1064/C1064M–08–Standard Test Method for Temperature of Freshly Mixed Hydraulic-426 Cement Concrete; ASTM International, West Conshohocken, PA, 2008, www.astm.org
     Google Scholar
  20. NMX-C-162-ONNCCE-2014: Determinación de la masa unitaria, cálculo del rendimiento y contenido de aire del concreto fresco por el método gravimétrico., ONNCCE S.C., México, (2014).
     Google Scholar
  21. NMX-C-083-ONNCCE-2014: Determinación de la resistencia a la compresión de especímenes – Método de prueba, ONNCCE S.C., México, (2014).
     Google Scholar
  22. G. Santiago-Hurtado, M.A. Baltazar-Zamora, A. Galindo D, J.A. Cabral M, F.H. Estupiñán L., P. Zambrano Robledo, C. Gaona-Tiburcio. (2013). Anticorrosive Efficiency of Primer Applied in Carbon Steel AISI 1018 as Reinforcement in a Soil Type MH. International Journal of Electrochemical Science, 8:6, pp. 8490-8501.
     Google Scholar
  23. A. Landa-Gómez, R. Croche B, S. Márquez-Montero, R. Galvan-Martínez, C. Gaona-Tiburcio, F. Almeraya-Calderón, M.A. Baltazar-Zamora. (2018). Correlation of Compression Resistance and Rupture Module of a Concrete of Ratio w/c= 0.50 with the Corrosion Potential, Electrical Resistivity and Ultrasonic Pulse Speed. ECS Transactions, 84:1, 217-227.
     Google Scholar
  24. ASTM C192/C192M–18–Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, 2016. www.astm.org
     Google Scholar
  25. ASTM G 59-97 (2014) – Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, PA, 2014, www.astm.org
     Google Scholar
  26. Miguel Angel Baltazar-Zamora, Sabino Márquez-Montero, Laura Landa-Ruiz, René Croche, Oscar López-Yza. (2020). Effect of the type of curing on the corrosion behavior of concrete exposed to urban and marine environment. European Journal of Engineering Research and Science, 5:1, pp. 91-95.
     Google Scholar
  27. S. Fajardo, D.M. Bastidas, M. Criado, J.M. Bastidas. (2014). Electrochemical study on the corrosion behavior of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides. Electrochimica Acta, 129, pp. 160–170.
     Google Scholar
  28. Miguel Angel Baltazar-Zamora, José Manuel Mendoza-Rangel, René Croche, Citlalli Gaona-Tiburcio, Cindy Hernández, Luis López, Francisco Olguín, Facundo Almeraya-Calderón. (2019). Corrosion Behavior of Galvanized Steel Embedded in Concrete Exposed to Soil Type MH Contaminated with Chlorides. Frontiers in Materials, 6, pp. 1-12.
     Google Scholar
  29. S. Feliu, J. A. González, C. Andrade, “ElectrochemicalMethods for On site Determinations of Corrosion Rates Rebars”. Techniques to Assess the Corrosion Activity of Steel Reinforced Concrete Structures, ASTM STP 1276. ASTM, 1996.
     Google Scholar
  30. ASTM C 876-15 (2015) –Standard Test Method for Corrosion Potentials of Uncoated Reinforcing steel in Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org
     Google Scholar
  31. H.W. Song, V. Saraswathy. (2007). Corrosion Monitoring of Reinforced Concrete Structures – A Review. International Journal of Electrochemical Science, 2:1, pp. 1-28.
     Google Scholar
  32. O. Troconis De Rincón et. al., Manual de Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Hormigón Armado, p. 134. Red DURAR. CYTED. Venezuela (1997)
     Google Scholar
  33. M.A. Baltazar-Zamora, D.M. Bastidas, G. Santiago-Hurtado, J.M. Mendoza-Rangel, C. Gaona-Tiburcio, J.M. Bastidas, F. Almeraya-Calderón. (2019). Effect of Silica Fume and Fly Ash Admixtures on the Corrosion Behavior of AISI 304 Embedded in Concrete Exposed in 3.5% NaCl Solution. Materials (Basel), 12:23, pp. 1-13.
     Google Scholar
  34. M.C. García-Alonso, J.A. González, J. Miranda, M.L. Escudero, M.J. Correia, M. Salta, A. Bennani, Corrosion behaviour of innovative stainless steels in mortar. (2007). Cement and Concrete Research, 37:11, pp. 1562-1569.
     Google Scholar
  35. M. Criado, D.M. Bastidas, S. Fajardo, A. Fernández-Jiménez, J.M. Bastidas. (2011). Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. Cement and Concrete Composites, 33:6, pp. 644–652.
     Google Scholar
  36. M.A. Baltazar-Zamora, G. Santiago-Hurtado, C. Gaona-Tiburcio et. al. (2012). Evaluation of the corrosion at early age in reinforced concrete exposed to sulfates. International Journal of Electrochemical Science, 7:1, pp. 588-600.
     Google Scholar


Most read articles by the same author(s)

1 2 > >>