Facultad de Ingeniería Civil - Xalapa, Universidad Veracruzana
* Corresponding author
Facultad de Ingeniería Civil - Xalapa, Universidad Veracruzana
Facultad de Ingeniería Civil - Xalapa, Universidad Veracruzana
Facultad de Ingeniería Mecánica y Eléctrica - Xalapa, Universidad Veracruzana
Facultad de Ingeniería Mecánica y Eléctrica - Xalapa, Universidad Veracruzana

Article Main Content

This study analyzes the electrochemical behavior of AISI 1018 steel as reinforcement in concrete exposed to the Xalapa city (urban environment) and seawater (marine environment). Two concrete mixtures were made, with ratio w/c of 0.45 and 0.65, according to the method of ACI 211.1. The specimens underwent three types of curing, the first was submerged in water for 27 days as indicated by the ONNCCE regulations, the second was cured as it is done on oeuvre (moisturizing the elements in the morning and in the afternoon) and the third one exposing to the environment (without applying water), before placing them in the exposition environment. The results of more than 340 days of monitoring of Ecorr and Icorr demonstrate that the marine environment is the most aggressive in the corrosion of reinforced concrete, with a better performance of the concrete of ratio w/c=0.45 and with a curing according to normative.

References

  1. G. Santiago-Hurtado, M.A. Baltazar-Zamora, R. Galván-Martínez, L. D. López L, F. Zapata G, P- Zambrano, C. Gaona-Tiburcio, F. Almeraya-Calderón. (2016). Electrochemical Evaluation of Reinforcement Concrete Exposed to Soil Type SP Contaminated with Sulphates. International Journal of Electrochemical Science, 11:6, pp. 4850-4864.
     Google Scholar
  2. A. Landa-Gómez, R. Croche B, S. Márquez M, R. Villegas A, H.A. Ariza-Figueroa, F.H. Estupiñán-López, C. Gaona-Tiburcio, F. Almeraya-Calderón, M.A. Baltazar-Zamora. (2018). Corrosion Behavior 304 and 316 Stainless Steel as Reinforcement in Sustainable Concrete Based on Sugar Cane Bagasse Ash Exposed to Na2SO4. ECS Transactions, 84:1, pp. 179-188.
     Google Scholar
  3. G. Santiago-Hurtado, M.A. Baltazar-Zamora, J. Olguín-Coca, L. D. López L, R. Galván-Martínez, A. Ríos-Juárez, C. Gaona-Tiburcio, F. Almeraya-Calderón. (2016). Electrochemical Evaluation of a Stainless Steel as Reinforcement in Sustainable Concrete Exposed to Chlorides. International Journal of Electrochemical Science, 11:4, pp. 2994-3006.
     Google Scholar
  4. M.A. Baltazar-Zamora, D.M. Bastidas, G. Santiago-Hurtado, J.M. Mendoza-Rangel, C. Gaona-Tiburcio, J.M. Bastidas, F. Almeraya-Calderón. (2019). Effect of Silica Fume and Fly Ash Admixtures on the Corrosion Behavior of AISI 304 Embedded in Concrete Exposed in 3.5% NaCl Solution. Materials (Basel), 12:23, pp. 1-13.
     Google Scholar
  5. T. Bellezze, M. Malavolta, A. Quaranta, N. Ruffini, G. Roventi. (2006). Corrosion behaviour in concrete of three differently galvanized steel bars, Cement and Concrete Composites, 28:3, pp. 246-255.
     Google Scholar
  6. M.A. Baltazar-Zamora et. al. (2012). Efficiency of Galvanized Steel Embedded in Concrete Previously Contaminated with 2, 3 and 4% of NaCl. International Journal of Electrochemical Science, 7:4, pp. 2997-3007.
     Google Scholar
  7. Aldo Landa-Gómez, S. Castillo Aguilar, J.A. Reyes Jimenez, R. Villegas Apaez, Jose. A. Cabral-Miramontes, C. Gaona Tiburcio, F. Almeraya, Miguel Angel Baltazar-Zamora. (2018). Evaluation of the Corrosion of AISI 304 Stainless Steel Embedded in Sustainable Concrete with High Volumes of Scba-SF Exposed in Marine Environment. ECS Meeting Abstracts, MA2018-02, pp. 587.
     Google Scholar
  8. Aldo Landa-Gómez, R. Croche B, O.M. López Yza, R. Galván-Martínez, J.A. Cabral-Miramontes, C. Gaona Tiburcio, F. Almeraya, Miguel Angel Baltazar-Zamora. (2018). Corrosion Behavior of AISI 316 Stainless Steel as Reinforcement in Ternary Sustainable Concrete Based on Scba-SF Exposed in Seawater. ECS Meeting Abstracts, MA2018-02, pp. 584.
     Google Scholar
  9. O. Ojeda-Farías, J.M. Mendoza-Rangel, M.A. Baltazar-Zamora. (2018). Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. Revista ALCONPAT, 8:2, pp. 194-208.
     Google Scholar
  10. ACI. Provision of mixtures, normal concrete, heavy and massive ACI 211.1, p. 29. Ed. IMCYC, México (2004).
     Google Scholar
  11. NMX-C-156-ONNCCE-2010: Determinación del revenimiento en el concreto fresco. ONNCCE S.C., México, (2010).
     Google Scholar
  12. ASTM C 1064/C1064M–08–Standard Test Method for Temperature of Freshly Mixed Hydraulic-426 Cement Concrete; ASTM International, West Conshohocken, PA, 2008, www.astm.org
     Google Scholar
  13. NMX-C-162-ONNCCE-2014: Determinación de la masa unitaria, cálculo del rendimiento y contenido de aire del concreto fresco por el método gravimétrico., ONNCCE S.C., México, (2014).
     Google Scholar
  14. NMX-C-083-ONNCCE-2014: Determinación de la resistencia a la compresión de especímenes – Método de prueba, ONNCCE S.C., México, (2014).
     Google Scholar
  15. ASTM G 59-97 (2014) – Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, PA, 2014, www.astm.org
     Google Scholar
  16. Miguel Angel Baltazar-Zamora, José Manuel Mendoza-Rangel, René Croche, Citlalli Gaona-Tiburcio, Cindy Hernández, Luis López, Francisco Olguín, Facundo Almeraya-Calderón. (2019). Corrosion Behavior of Galvanized Steel Embedded in Concrete Exposed to Soil Type MH Contaminated with Chlorides. Frontiers in Materials, 6, pp. 1-12.
     Google Scholar
  17. M. Criado, D.M. Bastidas, S. Fajardo, A. Fernández-Jiménez, J.M. Bastidas. (2011). Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. Cement and Concrete Composites, 33, pp. 644-652.
     Google Scholar
  18. M.A. Baltazar-Zamora, G. Santiago-Hurtado, C. Gaona-Tiburcio et. al. (2012). Evaluation of the corrosion at early age in reinforced concrete exposed to sulfates. International Journal of Electrochemical Science, 7:1, pp. 588-600.
     Google Scholar
  19. G. Santiago-Hurtado, M.A. Baltazar-Zamora, A. Galindo D, J.A. Cabral M, F.H. Estupiñán L., P. Zambrano Robledo, C. Gaona-Tiburcio. (2013). Anticorrosive Efficiency of Primer Applied in Carbon Steel AISI 1018 as Reinforcement in a Soil Type MH. International Journal of Electrochemical Science, 8:6, pp. 8490-8501.
     Google Scholar
  20. ASTM C 876-15 (2015) –Standard Test Method for Corrosion Potentials of Uncoated Reinforcing steel in Concrete, ASTM International, West Conshohocken, PA, 2015, www.astm.org
     Google Scholar
  21. H.W. Song, V. Saraswathy. (2007). Corrosion Monitoring of Reinforced Concrete Structures – A Review. International Journal of Electrochemical Science, 2:1, pp. 1-28.
     Google Scholar
  22. O. Troconis De Rincón et. al., Manual de Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Hormigón Armado, p. 134. Red DURAR. CYTED. Venezuela (1997)
     Google Scholar
  23. O. Troconis de Rincón et. al., (2016). Reinforced Concrete Durability in Marine Environments DURACON Project: Long-Term Exposure. Corrosion, 72:6, pp. 824-833.
     Google Scholar
  24. M.A. Baltazar-Zamora, G. Santiago-Hurtado, V.M. Moreno L, R. Croche B, M. de la Garza, F. Estupiñan L, P. Zambrano R., C. Gaona-Tiburcio. (2016). Electrochemical Behaviour of Galvanized Steel Embedded in Concrete Exposed to Sand Contaminated with NaCl. International Journal of Electrochemical Science, 11:12, pp. 10306-10319.
     Google Scholar
  25. A. Landa-Gómez, R. Croche B, S. Márquez-Montero, R. Galvan-Martínez, C. Gaona-Tiburcio, F. Almeraya-Calderón, M.A. Baltazar-Zamora. (2018). Correlation of Compression Resistance and Rupture Module of a Concrete of Ratio w/c= 0.50 with the Corrosion Potential, Electrical Resistivity and Ultrasonic Pulse Speed. ECS Transactions, 84:1, 217-227.
     Google Scholar


Most read articles by the same author(s)

1 2 > >>