Corrosion of AISI 316 Stainless Steel Embedded in Green Concrete with Low Volume of Sugar Cane Bagasse Ash and Silica Fume exposed in Seawater

##plugins.themes.bootstrap3.article.main##

  •   Miguel Angel Baltazar-Zamora

  •   Laura Landa-Ruiz

  •   Aldo Landa-Gómez

  •   Griselda Santiago-Hurtado

  •   Victor Moreno-Landeros

  •   Ce Tochtli Méndez Ramírez

  •   Victor Fernandez Rosales

  •   René Croche

Abstract

In the present research the corrosion behavior of AISI 316 Stainless Steel was analyzed, as reinforcement in Green Concrete made with Low Volume of Sugar Cane Bagasse Ash (SCBA) and Silica Fume (SF), compared to AISI 1018 steel. Four concrete mixtures were made, all with a ratio w / c = 0.65, the percentages of substitution were 0%, 10%, 20% and 30%. The specimens were exposed in seawater as an aggressive medium, corrosion was evaluated by monitoring the corrosion potential Ecorr (ASTM C-876-15) and corrosion rate icorr (ASTM G59). The results of Ecorr and icorr after 150 days of exposure show a better performance of AISI 316 steel, with a 10% of probability corrosion and a negligible level of corrosion respectively, the Green Concrete with 30% partial replacement of the CPC by the combination of SCBA-SF presented the best protection against corrosion.


Keywords: AISI 316, Corrosion, Green Concrete, SCBA, SF, Seawater

References

G. Cosoli, A. Mobili, N. Giulietti, P. Chiariotti, G. Pandarese, F. Tittarelli, T. Bellezze, N. Mikanovic, G.M. Revel. Performance of concretes manufactured with newly developed low-clinker cements exposed to water and chlorides: Characterization by means of electrical impedance measurements. Construction and Building Materials. 2020;271:121546.

M.A. Baltazar-Zamora, J.M. Mendoza-Rangel, R. Croche, C. Gaona-Tiburcio, C. Hernández, L. López, F. Olguín, F. Almeraya-Calderón. Corrosion Behavior of Galvanized Steel Embedded in Concrete Exposed to Soil Type MH Contaminated with Chlorides. Frontiers in Materials. 2019;6:1-12.

C. Pan, X. Li, J. Mao. The effect of a corrosion inhibitor on the rehabilitation of reinforced concrete containing sea sand and seawater. Materials. 2020;13:1480.

G. Santiago-Hurtado et al. Electrochemical Evaluation of a Stainless Steel as Reinforcement in Sustainable Concrete Exposed to Chlorides. International Journal of Electrochemical Science. 2016;11(4):2994-3006.

M. Ormellese, M. Berra, F. Bolzoni, T. Pastore. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures. Cement and Concrete Research. 2006;36(3):536–547.

V. Volpi-León, L.D. López-Léon, J. Hernández-Ávila, M.A. Baltazar-Zamora, F.J. Olguín-Coca, A.L. López-León. Corrosion study in reinforced concrete made with mine waste as mineral additive. International Journal of Electrochemical Science. 2017;12(1):22-31.

W. Raczkiewicz, A. Wójcicki. Temperature Impact on the Assessment of Reinforcement Corrosion Risk in Concrete by Galvanostatic Pulse Method. Applied Sciences. 2020;10:1089.

M.A. Baltazar-Zamora, S. Márquez-Montero, L. Landa-Ruiz, R. Croche, O. López-Yza. Effect of the type of curing on the corrosion behavior of concrete exposed to urban and marine environment. European Journal of Engineering Research and Science. 2020;5(1):91-95.

R. E. Melchers, C.Q. Li. Reinforcement corrosion initiation and activation times in concrete structures exposed to severe marine environments. Cement and Concrete Research. 2009;39(11):1068–1076.

O. Troconis de Rincón et al. Reinforced Concrete Durability in Marine Environments DURACON Project: Long-Term Exposure. Corrosion. 2016 ;72(6):824-833.

S.D. Cramer, B.S. Covino, S.J. Bullard, G.R. Holcomb, J.H. Russell, F.J. Nelson, H.M. Laylor, S, M. Soltesz. Corrosion prevention and remediation strategies for reinforced concrete coastal bridge. Cement and Concrete Composites. 2002;24(1):101–117.

L. Landa-Ruiz, H. Ariza-Figueroa, G. Santiago-Hurtado, V. Moreno-Landeros, R. López Meraz, R. Villegas-Apaez, S. Márquez-Montero, R. Croche, M.A. Baltazar-Zamora. Evaluation of the Behavior of The Physical and Mechanical Properties of Green Concrete Exposed to Magnesium Sulfate. European Journal of Engineering Research and Science. 2020;5(11):1353-1356.

R.B. Figueira. Electrochemical sensors for monitoring the corrosion conditions of reinforced concrete structures: A review. Applied Sciences. 2017;7:1157.

M.A. Baltazar-Zamora, L. Landa-Ruiz, Y. Rivera, R. Croche. Electrochemical Evaluation of Galvanized Steel and AISI 1018 as Reinforcement in a Soil Type MH. European Journal of Engineering Research and Science. 2020;5(3):259-263.

V. Farhangi, M. Karakouzian. Effect of fiber reinforced polymer tubes filled with recycled materials and concrete on structural capacity of pile foundations. Applied Sciences. 2020;10:1554.

L. Landa-Ruiz et al. Evaluation of the Influence of the Level of Corrosion of the Reinforcing Steel in the Moment-Curvature Diagrams of Rectangular Concrete Columns. European Journal of Engineering and Technology Research. 2021;6(3):139-145.

W. Raczkiewicz. Use of polypropylene fibres to increase the resistance of reinforcement to chloride corrosion in concretes. Science and Engineering of Composite Materials. 2021;28(1):555–567.

A. Landa-Gómez et.al. Corrosion Behavior 304 and 316 Stainless Steel as Reinforcement in Sustainable Concrete Based on Sugar Cane Bagasse Ash Exposed to Na2SO4. ECS Transactions. 2018;84(1):179-188.

W. Raczkiewicz, P.G. Kossakowski. Electrochemical diagnostics of sprayed fiber-reinforced concrete corrosion. Applied Sciences. 2019; 9:3763.

A. Landa-Gómez et.al. Correlation of Compression Resistance and Rupture Module of a Concrete of Ratio w/c= 0.50 with the Corrosion Potential, Electrical Resistivity and Ultrasonic Pulse Speed. ECS Transactions. 2018;84(1):217-227.

G.P. Millán Ramírez et.al. Deterioration and Protection of Concrete Elements Embedded in Contaminated Soil: A Review. Materials. 2021;14:3253.

G. Cosoli, A. Mobili, F. Tittarelli, G.M. Revel, P. Chiariotti. Electrical Resistivity and Electrical Impedance Measurement in Mortar and Concrete Elements: A Systematic Review. Applied Sciences. 2020;10: 9152.

W. Raczkiewicz et.al. Influence of the Type of Cement and the Addition of an Air-Entraining Agent on the Effectiveness of Concrete Cover in the Protection of Reinforcement against Corrosion. Materials. 2021;14:4657.

M.T. Liang, J.J. Lan. Reliability analysis for the existing reinforced concrete pile corrosion of bridge substructure. Cement and Concrete Research. 2005;35(3):540–550.

L. Landa-Ruiz, S. Márquez-Montero, G. Santiago-Hurtado, V. Moreno-Landeros, J.M. Mendoza-Rangel, and M.A. Baltazar-Zamora. Effect of the Addition of Sugar Cane Bagasse Ash on the Compaction Properties of a Granular Material Type Hydraulic Base. European Journal of Engineering and Technology Research. 2021;6(1):76–79.

O. Ojeda-Farías, J.M. Mendoza-Rangel, M.A. Baltazar-Zamora. Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. Revista ALCONPAT. 2018;8(2):194-208.

H.A.F. Dehwah, M. Maslehuddin, S.A. Austin. Long-term effect of sulfate ions and associated cation type on chloride-induced reinforcement corrosion in Portland cement concretes. Cement and Concrete Composites. 2002;24(1):17–25.

M.A. Baltazar-Zamora et al. Efficiency of Galvanized Steel Embedded in Concrete Previously Contaminated with 2, 3 and 4% of NaCl. International Journal of Electrochemical Science. 2012;7(4):2997-3007.

S.R. Yeomans. Performance of Black, Galvanized, and Epoxy-Coated Reinforcing Steels in Chloride- Contaminated Concrete. Corrosion. 1994;50(1):72–81.

M.A. Baltazar-Zamora, D.M. Bastidas, G. Santiago-Hurtado, J.M. Mendoza-Rangel, C. Gaona-Tiburcio, J.M. Bastidas, F. Almeraya-Calderón. Effect of Silica Fume and Fly Ash Admixtures on the Corrosion Behavior of AISI 304 Embedded in Concrete Exposed in 3.5% NaCl Solution. Materials (Basel). 2019;12(23):1-13.

F. Shaheen, B. Pradhan. Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions. Cement and Concrete Research. 2017;91:73–86

M.A. Baltazar-Zamora, A. Landa-Sánchez, L. Landa-Ruiz, H. Ariza-Figueroa, P. Gallego-Quintana, A. Ramírez-García, R. Croche, S. Márquez-Montero. Corrosion of AISI 316 Stainless Steel Embedded in Sustainable Concrete made with Sugar Cane Bagasse Ash (SCBA) Exposed to Marine Environment. European Journal of Engineering Research and Science. 2020;5(2):127-131.

G. Roventi, T. Bellezze, G. Giuliani, C. Conti. Corrosion resistance of galvanized steel reinforcements in carbonated concrete: Effect of wet–dry cycles in tap water and in chloride solution on the passivating layer. Cement and Concrete Research. 2014;65:76–84.

M.A. Baltazar-Zamora, G. Santiago-Hurtado, V.M. Moreno L, R. Croche B, M. de la Garza, F. Estupiñan L, P. Zambrano R., C. Gaona-Tiburcio. Electrochemical Behaviour of Galvanized Steel Embedded in Concrete Exposed to Sand Contaminated with NaCl. International Journal of Electrochemical Science. 2016;11(12):10306-10319.

D. Wang, X. Zhao, Y. Meng, Z. Chen. Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack. Construction and Building Materials. 2017;147: 398–406.

M.A. Baltazar-Zamora, G. Santiago-Hurtado, C. Gaona-Tiburcio et al. Evaluation of the corrosion at early age in reinforced concrete exposed to sulfates. International Journal of Electrochemical Science. 2012;7(1):588-600.

V.V. Praveen, D. Ravi. Influence of supplementary cementitious materials on strengthand durability characteristics of concrete. Advanced in Concrete Construction. 2019;7:75–85.

G. Santiago-Hurtado et al. Electrochemical Evaluation of Reinforcement Concrete Exposed to Soil Type SP Contaminated with Sulphates. International Journal of Electrochemical Science. 2016;11(6):4850-4864.

G. Burtuujin, D. Son, I. Jang, C. Yi, H. Lee. Corrosion behavior of pre-rusted rebars in cement mortar exposed to harsh environment. Applied Sciences. 2020;10:8705.

A. Landa-Sánchez et al. Corrosion Behavior of Steel-Reinforced Green Concrete Containing Recycled Coarse Aggregate Additions in Sulfate Media. Materials (Basel). 2020;13(19):1-22.

M.L. Berndt. Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Construction and Building Materials. 2009;23(7):2606–2613.

H.A. Ariza-Figueroa et al. Corrosion Behavior of AISI 304 Stainless Steel Reinforcements in SCBA-SF Ternary Ecological Concrete Exposed to MgSO4. Materials (Basel). 2020;13(10):1-16.

P. Xu, L. Jiang, M. Guo, J. Zha, L. Chen, C. Chen, N. Xu. Influence of sulfate salt type on passive film of steel in simulated concrete pore solution. Construction and Building Materials. 2019;223:352–359.

Miguel Angel Baltazar-Zamora, Hilda Ariza-Figueroa, Laura Landa-Ruiz, and René Croche. Electrochemical Evaluation of AISI 304 SS and Galvanized Steel in Ternary Ecological Concrete based on Sugar Cane Bagasse Ash and Silica Fume (SCBA-SF) exposed to Na2SO4. European Journal of Engineering Research and Science. 2020;5(3):353-357.

B. Pradhan. Corrosion behavior of steel reinforcement in concrete exposed to composite chloride–sulfate environment. Construction and Building Materials. 2014;72:398–410.

L. Landa-Ruiz et al. Electrochemical Corrosion of Galvanized Steel in Binary Sustainable Concrete Made with Sugar Cane Bagasse Ash (SCBA) and Silica Fume (SF) Exposed to Sulfates. Applied Sciences. 2021;11:2133.

Md. Safiuddin, J.S. West, K.A. Soudki. Hardened properties of self-consolidating high performance concrete including rice husk ash. Cement and Concrete Composites. 2010;32:708–717

W. Wu, R. Wang, C. Zhu, Q. Meng. The effect of fly ash and silica fume on mechanical properties and durability of coral aggregate concrete. Construction and Building Materials. 2018;185:69-78

H.A. Mohamed. Effect of fly ash and silica fume on compressive strength of self-compacting concrete under different curing conditions. Ain Shams Eng. J. 2011;2:79–86.

L. Landa-Ruiz et al. Physical, Mechanical and Durability Properties of Ecofriendly Ternary Concrete Made with Sugar Cane Bagasse Ash and Silica Fume. Crystals. 2021;11:1012.

L. Landa-Ruiz et al. Evaluation of the Behavior of the Physical and Mechanical Properties of Green Concrete Exposed to Magnesium Sulfate. Prime Archives in Material Science. 2021;3:1-12.

E. Arif, M.W. Clark, N. Lake. Sugar cane bagasse ash from a high-efficiency co-generation boiler as filler in concrete. Construction and Building Materials. 2017;151:692–703.

R.K. Patra, B.B. Mukharjee. Influence of incorporation of granulated blast furnace slag as replacement of fine aggregate on properties of concrete. J. Clean. Prod. 2017;165:468–476.

ACI. Provision of mixtures, normal concrete, heavy and massive ACI 211.1, p. 29. Ed. IMCYC, Mexico (2004).

ASTM C29 / C29M–07–Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate; ASTM International, West Conshohocken, PA, 2007, www.astm.org.

ASTM C127–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate; ASTM International, West Conshohocken, PA, 2015, www.astm.org.

ASTM C128–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate; ASTM International, West Conshohocken, PA, 2015, www.astm.org.

ASTM C136 / C136M–14–Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates; ASTM International, West Conshohocken, PA, 2014, www.astm.org.

NMX-C-156-ONNCCE-2010: Determinación del revenimiento en el concreto fresco. ONNCCE S.C., México, (2010).

ASTM C 1064/C1064M - 08 Standard, (2008). Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete. ASTM International, West Conshohocken, PA, 2008, www.astm.org.

NMX-C-162-ONNCCE-2014: Determinación de la masa unitaria, cálculo del rendimiento y contenido de aire del concreto fresco por el método gravimétrico., ONNCCE S.C., México, (2014).

NMX-C-083-ONNCCE-2014: Determinación de la resistencia a la compresión de especímenes – Método de prueba, ONNCCE S.C., México, (2014).

G. Santiago-Hurtado, M.A. Baltazar-Zamora, A. Galindo D, J.A. Cabral M, F.H. Estupiñán L., P. Zambrano Robledo, C. Gaona-Tiburcio. Anticorrosive Efficiency of Primer Applied in Carbon Steel AISI 1018 as Reinforcement in a Soil Type MH. International Journal of Electrochemical Science. 2013;8(6):8490-8501.

ASTM G 59-97 (2014) – Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, PA, 2014, www.astm.org.

M. Criado, D.M. Bastidas, S. Fajardo, A. Fernández-Jiménez, J.M. Bastidas. Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. Cement and Concrete Composites. 2011;33(6):644-652.

S. Feliu, J. A. González, and C. Andrade, Techniques to Assess the Corrosion Activity of Steel Reinforced Concrete Structures, ASTM STP 1276. ASTM, 1996.

ASTM C 876-15, Standard Test Method for Corrosion potentials of uncoated reinforcing steel in concrete, ASTM (2015).

H.W. Song, V. Saraswathy. Corrosion Monitoring of Reinforced Concrete Structures – A Review. International Journal of Electrochemical Science. 2007;2(1):1-28.

O. Troconis De Rincón et al. Manual de Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Hormigón Armado, p. 134. Red DURAR. CYTED. Venezuela (1997).

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Baltazar-Zamora, M.A., Landa-Ruiz, L., Landa-Gómez, A., Santiago-Hurtado, G., Moreno-Landeros, V., Méndez Ramírez, C.T., Fernandez Rosales, V. and Croche, R. 2022. Corrosion of AISI 316 Stainless Steel Embedded in Green Concrete with Low Volume of Sugar Cane Bagasse Ash and Silica Fume exposed in Seawater. European Journal of Engineering and Technology Research. 7, 1 (Jan. 2022), 57–62. DOI:https://doi.org/10.24018/ejeng.2022.7.1.2716.

Most read articles by the same author(s)