##plugins.themes.bootstrap3.article.main##

In the present research the corrosion behavior of AISI 316 Stainless Steel was analyzed, as reinforcement in Green Concrete made with Low Volume of Sugar Cane Bagasse Ash (SCBA) and Silica Fume (SF), compared to AISI 1018 steel. Four concrete mixtures were made, all with a ratio w / c = 0.65, the percentages of substitution were 0%, 10%, 20% and 30%. The specimens were exposed in seawater as an aggressive medium, corrosion was evaluated by monitoring the corrosion potential Ecorr (ASTM C-876-15) and corrosion rate icorr (ASTM G59). The results of Ecorr and icorr after 150 days of exposure show a better performance of AISI 316 steel, with a 10% of probability corrosion and a negligible level of corrosion respectively, the Green Concrete with 30% partial replacement of the CPC by the combination of SCBA-SF presented the best protection against corrosion.

Downloads

Download data is not yet available.

References

  1. G. Cosoli, A. Mobili, N. Giulietti, P. Chiariotti, G. Pandarese, F. Tittarelli, T. Bellezze, N. Mikanovic, G.M. Revel. Performance of concretes manufactured with newly developed low-clinker cements exposed to water and chlorides: Characterization by means of electrical impedance measurements. Construction and Building Materials. 2020;271:121546.
     Google Scholar
  2. M.A. Baltazar-Zamora, J.M. Mendoza-Rangel, R. Croche, C. Gaona-Tiburcio, C. Hernández, L. López, F. Olguín, F. Almeraya-Calderón. Corrosion Behavior of Galvanized Steel Embedded in Concrete Exposed to Soil Type MH Contaminated with Chlorides. Frontiers in Materials. 2019;6:1-12.
     Google Scholar
  3. C. Pan, X. Li, J. Mao. The effect of a corrosion inhibitor on the rehabilitation of reinforced concrete containing sea sand and seawater. Materials. 2020;13:1480.
     Google Scholar
  4. G. Santiago-Hurtado et al. Electrochemical Evaluation of a Stainless Steel as Reinforcement in Sustainable Concrete Exposed to Chlorides. International Journal of Electrochemical Science. 2016;11(4):2994-3006.
     Google Scholar
  5. M. Ormellese, M. Berra, F. Bolzoni, T. Pastore. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures. Cement and Concrete Research. 2006;36(3):536–547.
     Google Scholar
  6. V. Volpi-León, L.D. López-Léon, J. Hernández-Ávila, M.A. Baltazar-Zamora, F.J. Olguín-Coca, A.L. López-León. Corrosion study in reinforced concrete made with mine waste as mineral additive. International Journal of Electrochemical Science. 2017;12(1):22-31.
     Google Scholar
  7. W. Raczkiewicz, A. Wójcicki. Temperature Impact on the Assessment of Reinforcement Corrosion Risk in Concrete by Galvanostatic Pulse Method. Applied Sciences. 2020;10:1089.
     Google Scholar
  8. M.A. Baltazar-Zamora, S. Márquez-Montero, L. Landa-Ruiz, R. Croche, O. López-Yza. Effect of the type of curing on the corrosion behavior of concrete exposed to urban and marine environment. European Journal of Engineering Research and Science. 2020;5(1):91-95.
     Google Scholar
  9. R. E. Melchers, C.Q. Li. Reinforcement corrosion initiation and activation times in concrete structures exposed to severe marine environments. Cement and Concrete Research. 2009;39(11):1068–1076.
     Google Scholar
  10. O. Troconis de Rincón et al. Reinforced Concrete Durability in Marine Environments DURACON Project: Long-Term Exposure. Corrosion. 2016 ;72(6):824-833.
     Google Scholar
  11. S.D. Cramer, B.S. Covino, S.J. Bullard, G.R. Holcomb, J.H. Russell, F.J. Nelson, H.M. Laylor, S, M. Soltesz. Corrosion prevention and remediation strategies for reinforced concrete coastal bridge. Cement and Concrete Composites. 2002;24(1):101–117.
     Google Scholar
  12. L. Landa-Ruiz, H. Ariza-Figueroa, G. Santiago-Hurtado, V. Moreno-Landeros, R. López Meraz, R. Villegas-Apaez, S. Márquez-Montero, R. Croche, M.A. Baltazar-Zamora. Evaluation of the Behavior of The Physical and Mechanical Properties of Green Concrete Exposed to Magnesium Sulfate. European Journal of Engineering Research and Science. 2020;5(11):1353-1356.
     Google Scholar
  13. R.B. Figueira. Electrochemical sensors for monitoring the corrosion conditions of reinforced concrete structures: A review. Applied Sciences. 2017;7:1157.
     Google Scholar
  14. M.A. Baltazar-Zamora, L. Landa-Ruiz, Y. Rivera, R. Croche. Electrochemical Evaluation of Galvanized Steel and AISI 1018 as Reinforcement in a Soil Type MH. European Journal of Engineering Research and Science. 2020;5(3):259-263.
     Google Scholar
  15. V. Farhangi, M. Karakouzian. Effect of fiber reinforced polymer tubes filled with recycled materials and concrete on structural capacity of pile foundations. Applied Sciences. 2020;10:1554.
     Google Scholar
  16. L. Landa-Ruiz et al. Evaluation of the Influence of the Level of Corrosion of the Reinforcing Steel in the Moment-Curvature Diagrams of Rectangular Concrete Columns. European Journal of Engineering and Technology Research. 2021;6(3):139-145.
     Google Scholar
  17. W. Raczkiewicz. Use of polypropylene fibres to increase the resistance of reinforcement to chloride corrosion in concretes. Science and Engineering of Composite Materials. 2021;28(1):555–567.
     Google Scholar
  18. A. Landa-Gómez et.al. Corrosion Behavior 304 and 316 Stainless Steel as Reinforcement in Sustainable Concrete Based on Sugar Cane Bagasse Ash Exposed to Na2SO4. ECS Transactions. 2018;84(1):179-188.
     Google Scholar
  19. W. Raczkiewicz, P.G. Kossakowski. Electrochemical diagnostics of sprayed fiber-reinforced concrete corrosion. Applied Sciences. 2019; 9:3763.
     Google Scholar
  20. A. Landa-Gómez et.al. Correlation of Compression Resistance and Rupture Module of a Concrete of Ratio w/c= 0.50 with the Corrosion Potential, Electrical Resistivity and Ultrasonic Pulse Speed. ECS Transactions. 2018;84(1):217-227.
     Google Scholar
  21. G.P. Millán Ramírez et.al. Deterioration and Protection of Concrete Elements Embedded in Contaminated Soil: A Review. Materials. 2021;14:3253.
     Google Scholar
  22. G. Cosoli, A. Mobili, F. Tittarelli, G.M. Revel, P. Chiariotti. Electrical Resistivity and Electrical Impedance Measurement in Mortar and Concrete Elements: A Systematic Review. Applied Sciences. 2020;10: 9152.
     Google Scholar
  23. W. Raczkiewicz et.al. Influence of the Type of Cement and the Addition of an Air-Entraining Agent on the Effectiveness of Concrete Cover in the Protection of Reinforcement against Corrosion. Materials. 2021;14:4657.
     Google Scholar
  24. M.T. Liang, J.J. Lan. Reliability analysis for the existing reinforced concrete pile corrosion of bridge substructure. Cement and Concrete Research. 2005;35(3):540–550.
     Google Scholar
  25. L. Landa-Ruiz, S. Márquez-Montero, G. Santiago-Hurtado, V. Moreno-Landeros, J.M. Mendoza-Rangel, and M.A. Baltazar-Zamora. Effect of the Addition of Sugar Cane Bagasse Ash on the Compaction Properties of a Granular Material Type Hydraulic Base. European Journal of Engineering and Technology Research. 2021;6(1):76–79.
     Google Scholar
  26. O. Ojeda-Farías, J.M. Mendoza-Rangel, M.A. Baltazar-Zamora. Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. Revista ALCONPAT. 2018;8(2):194-208.
     Google Scholar
  27. H.A.F. Dehwah, M. Maslehuddin, S.A. Austin. Long-term effect of sulfate ions and associated cation type on chloride-induced reinforcement corrosion in Portland cement concretes. Cement and Concrete Composites. 2002;24(1):17–25.
     Google Scholar
  28. M.A. Baltazar-Zamora et al. Efficiency of Galvanized Steel Embedded in Concrete Previously Contaminated with 2, 3 and 4% of NaCl. International Journal of Electrochemical Science. 2012;7(4):2997-3007.
     Google Scholar
  29. S.R. Yeomans. Performance of Black, Galvanized, and Epoxy-Coated Reinforcing Steels in Chloride- Contaminated Concrete. Corrosion. 1994;50(1):72–81.
     Google Scholar
  30. M.A. Baltazar-Zamora, D.M. Bastidas, G. Santiago-Hurtado, J.M. Mendoza-Rangel, C. Gaona-Tiburcio, J.M. Bastidas, F. Almeraya-Calderón. Effect of Silica Fume and Fly Ash Admixtures on the Corrosion Behavior of AISI 304 Embedded in Concrete Exposed in 3.5% NaCl Solution. Materials (Basel). 2019;12(23):1-13.
     Google Scholar
  31. F. Shaheen, B. Pradhan. Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions. Cement and Concrete Research. 2017;91:73–86
     Google Scholar
  32. M.A. Baltazar-Zamora, A. Landa-Sánchez, L. Landa-Ruiz, H. Ariza-Figueroa, P. Gallego-Quintana, A. Ramírez-García, R. Croche, S. Márquez-Montero. Corrosion of AISI 316 Stainless Steel Embedded in Sustainable Concrete made with Sugar Cane Bagasse Ash (SCBA) Exposed to Marine Environment. European Journal of Engineering Research and Science. 2020;5(2):127-131.
     Google Scholar
  33. G. Roventi, T. Bellezze, G. Giuliani, C. Conti. Corrosion resistance of galvanized steel reinforcements in carbonated concrete: Effect of wet–dry cycles in tap water and in chloride solution on the passivating layer. Cement and Concrete Research. 2014;65:76–84.
     Google Scholar
  34. M.A. Baltazar-Zamora, G. Santiago-Hurtado, V.M. Moreno L, R. Croche B, M. de la Garza, F. Estupiñan L, P. Zambrano R., C. Gaona-Tiburcio. Electrochemical Behaviour of Galvanized Steel Embedded in Concrete Exposed to Sand Contaminated with NaCl. International Journal of Electrochemical Science. 2016;11(12):10306-10319.
     Google Scholar
  35. D. Wang, X. Zhao, Y. Meng, Z. Chen. Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack. Construction and Building Materials. 2017;147: 398–406.
     Google Scholar
  36. M.A. Baltazar-Zamora, G. Santiago-Hurtado, C. Gaona-Tiburcio et al. Evaluation of the corrosion at early age in reinforced concrete exposed to sulfates. International Journal of Electrochemical Science. 2012;7(1):588-600.
     Google Scholar
  37. V.V. Praveen, D. Ravi. Influence of supplementary cementitious materials on strengthand durability characteristics of concrete. Advanced in Concrete Construction. 2019;7:75–85.
     Google Scholar
  38. G. Santiago-Hurtado et al. Electrochemical Evaluation of Reinforcement Concrete Exposed to Soil Type SP Contaminated with Sulphates. International Journal of Electrochemical Science. 2016;11(6):4850-4864.
     Google Scholar
  39. G. Burtuujin, D. Son, I. Jang, C. Yi, H. Lee. Corrosion behavior of pre-rusted rebars in cement mortar exposed to harsh environment. Applied Sciences. 2020;10:8705.
     Google Scholar
  40. A. Landa-Sánchez et al. Corrosion Behavior of Steel-Reinforced Green Concrete Containing Recycled Coarse Aggregate Additions in Sulfate Media. Materials (Basel). 2020;13(19):1-22.
     Google Scholar
  41. M.L. Berndt. Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Construction and Building Materials. 2009;23(7):2606–2613.
     Google Scholar
  42. H.A. Ariza-Figueroa et al. Corrosion Behavior of AISI 304 Stainless Steel Reinforcements in SCBA-SF Ternary Ecological Concrete Exposed to MgSO4. Materials (Basel). 2020;13(10):1-16.
     Google Scholar
  43. P. Xu, L. Jiang, M. Guo, J. Zha, L. Chen, C. Chen, N. Xu. Influence of sulfate salt type on passive film of steel in simulated concrete pore solution. Construction and Building Materials. 2019;223:352–359.
     Google Scholar
  44. Miguel Angel Baltazar-Zamora, Hilda Ariza-Figueroa, Laura Landa-Ruiz, and René Croche. Electrochemical Evaluation of AISI 304 SS and Galvanized Steel in Ternary Ecological Concrete based on Sugar Cane Bagasse Ash and Silica Fume (SCBA-SF) exposed to Na2SO4. European Journal of Engineering Research and Science. 2020;5(3):353-357.
     Google Scholar
  45. B. Pradhan. Corrosion behavior of steel reinforcement in concrete exposed to composite chloride–sulfate environment. Construction and Building Materials. 2014;72:398–410.
     Google Scholar
  46. L. Landa-Ruiz et al. Electrochemical Corrosion of Galvanized Steel in Binary Sustainable Concrete Made with Sugar Cane Bagasse Ash (SCBA) and Silica Fume (SF) Exposed to Sulfates. Applied Sciences. 2021;11:2133.
     Google Scholar
  47. Md. Safiuddin, J.S. West, K.A. Soudki. Hardened properties of self-consolidating high performance concrete including rice husk ash. Cement and Concrete Composites. 2010;32:708–717
     Google Scholar
  48. W. Wu, R. Wang, C. Zhu, Q. Meng. The effect of fly ash and silica fume on mechanical properties and durability of coral aggregate concrete. Construction and Building Materials. 2018;185:69-78
     Google Scholar
  49. H.A. Mohamed. Effect of fly ash and silica fume on compressive strength of self-compacting concrete under different curing conditions. Ain Shams Eng. J. 2011;2:79–86.
     Google Scholar
  50. L. Landa-Ruiz et al. Physical, Mechanical and Durability Properties of Ecofriendly Ternary Concrete Made with Sugar Cane Bagasse Ash and Silica Fume. Crystals. 2021;11:1012.
     Google Scholar
  51. L. Landa-Ruiz et al. Evaluation of the Behavior of the Physical and Mechanical Properties of Green Concrete Exposed to Magnesium Sulfate. Prime Archives in Material Science. 2021;3:1-12.
     Google Scholar
  52. E. Arif, M.W. Clark, N. Lake. Sugar cane bagasse ash from a high-efficiency co-generation boiler as filler in concrete. Construction and Building Materials. 2017;151:692–703.
     Google Scholar
  53. R.K. Patra, B.B. Mukharjee. Influence of incorporation of granulated blast furnace slag as replacement of fine aggregate on properties of concrete. J. Clean. Prod. 2017;165:468–476.
     Google Scholar
  54. ACI. Provision of mixtures, normal concrete, heavy and massive ACI 211.1, p. 29. Ed. IMCYC, Mexico (2004).
     Google Scholar
  55. ASTM C29 / C29M–07–Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate; ASTM International, West Conshohocken, PA, 2007, www.astm.org.
     Google Scholar
  56. ASTM C127–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate; ASTM International, West Conshohocken, PA, 2015, www.astm.org.
     Google Scholar
  57. ASTM C128–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate; ASTM International, West Conshohocken, PA, 2015, www.astm.org.
     Google Scholar
  58. ASTM C136 / C136M–14–Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates; ASTM International, West Conshohocken, PA, 2014, www.astm.org.
     Google Scholar
  59. NMX-C-156-ONNCCE-2010: Determinación del revenimiento en el concreto fresco. ONNCCE S.C., México, (2010).
     Google Scholar
  60. ASTM C 1064/C1064M - 08 Standard, (2008). Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete. ASTM International, West Conshohocken, PA, 2008, www.astm.org.
     Google Scholar
  61. NMX-C-162-ONNCCE-2014: Determinación de la masa unitaria, cálculo del rendimiento y contenido de aire del concreto fresco por el método gravimétrico., ONNCCE S.C., México, (2014).
     Google Scholar
  62. NMX-C-083-ONNCCE-2014: Determinación de la resistencia a la compresión de especímenes – Método de prueba, ONNCCE S.C., México, (2014).
     Google Scholar
  63. G. Santiago-Hurtado, M.A. Baltazar-Zamora, A. Galindo D, J.A. Cabral M, F.H. Estupiñán L., P. Zambrano Robledo, C. Gaona-Tiburcio. Anticorrosive Efficiency of Primer Applied in Carbon Steel AISI 1018 as Reinforcement in a Soil Type MH. International Journal of Electrochemical Science. 2013;8(6):8490-8501.
     Google Scholar
  64. ASTM G 59-97 (2014) – Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, PA, 2014, www.astm.org.
     Google Scholar
  65. M. Criado, D.M. Bastidas, S. Fajardo, A. Fernández-Jiménez, J.M. Bastidas. Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. Cement and Concrete Composites. 2011;33(6):644-652.
     Google Scholar
  66. S. Feliu, J. A. González, and C. Andrade, Techniques to Assess the Corrosion Activity of Steel Reinforced Concrete Structures, ASTM STP 1276. ASTM, 1996.
     Google Scholar
  67. ASTM C 876-15, Standard Test Method for Corrosion potentials of uncoated reinforcing steel in concrete, ASTM (2015).
     Google Scholar
  68. H.W. Song, V. Saraswathy. Corrosion Monitoring of Reinforced Concrete Structures – A Review. International Journal of Electrochemical Science. 2007;2(1):1-28.
     Google Scholar
  69. O. Troconis De Rincón et al. Manual de Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Hormigón Armado, p. 134. Red DURAR. CYTED. Venezuela (1997).
     Google Scholar


Most read articles by the same author(s)

1 2 > >>