Eco-Friendly Concrete Made with System CPC-SCBASF As a Protector Against Sulfate Corrosion of Reinforcing Steel AISI 1018

##plugins.themes.bootstrap3.article.main##

  •   Brenda Paola Baltazar-García

  •   Daniel Francisco Baltazar-Zamora

  •   Laura Landa-Ruiz

  •   Ce Tochtli Méndez

  •   Rodolfo Solorzano

  •   Francisco Humberto Estupiñan López

  •   René Croche

  •   Griselda Santiago-Hurtado

  •   Victor Moreno-Landeros

  •   Citlalli Gaona-Tiburcio

  •   Facundo Almeraya-Calderón

  •   Miguel Angel Baltazar-Zamora

Abstract

In the present investigation, the protector against sulfate corrosion of reinforcing steel AISI 1018, which provides the Eco-friendly Concrete system CPC-SCBA-SF, was evaluated. This system was made with CPC-SCBA-SF cementitious materials, in percentages of 90-5-5 and 80-10-10 respectively, with exposure of the concrete specimens to a 3.5% MgSO4 solution, an experimental arrangement that simulates the foundations of Civil Works such as bridges, buildings, pavements, etc.; in soils contaminated with sulfates. The design of the concrete mixtures was in accordance with the ACI 211.1 method. The behavior of the corrosion potential Ecorr and the corrosion rate (icorr) of the AISI 1018 steel embedded in Conventional Concrete (CC) and in the EC were evaluated during a period of 180 days of exposure to an aggressive environment. The Ecorr values indicate between a 10% risk of corrosion and uncertainty, according to the ASTM C-876-15 standard, but the icorr indicates a negligible level of corrosion but with a tendency towards the activation of the system, with the eco-friendly concrete EC-20 having the best performance.


Keywords: Eco-Friendly Concrete, Corrosion, AISI 1018, System CPC-SCBA-SF, Magnesium Sulfate.

References

Hassi S, Menu B, Touhami ME. The Use of the Electrochemical Impedance Technique to Predict the Resistance to Chloride Ingress in Silica Fume and Fly Ash-Reinforced Blended Mortars Exposed to Chloride or Chloride–Sulfate Solutions. Journal of Bio- and Tribo-Corrosion. 2022; 8: 13. DOI: 10.1007/s40735-021-00609-1.

Baltazar-Zamora MA, Márquez-Montero S, Landa-Ruiz L, Croche R, López-Yza O. Effect of the type of curing on the corrosion behavior of concrete exposed to the urban and marine environment. European Journal of Engineering Research and Science. 2020; 5(1): 91-95. DOI: 10.24018/ejeng.2020.5.1.1716.

Sagñay S, Bautista A, Donaire J, Torres-Carrasco M, Bastidas DM, Velasco F. Chloride-induced corrosion of steel reinforcement in mortars manufactured with alternative environmentally-friendly binders. Cement and Concrete Composites. 2022; 130: 104557. DOI: 10.1016/j.cemconcomp.2022.104557.

Volpi-León V, López-Léon LD, Hernández-Ávila J, Baltazar-Zamora MA, Olguín-Coca FJ, López-León AL. Corrosion study in reinforced concrete made with mine waste as a mineral additive. International Journal of Electrochemical Science. 2017; 12(1): 22-31. DOI: 10.20964/2017.01.08.

Rabi M, Shamass R, Cashell KA. Structural performance of stainless steel reinforced concrete members: A review. Construction and Building Materials. 2022; 325: 126673. DOI: 10.1016/j.conbuildmat.2022.126673.

Troconis de Rincón O, Montenegro JC, Vera R, Carvajal AM, de Gutiérrez RM, Del Vasto S, Saborio E, et. al. Reinforced Concrete Durability in Marine Environments DURACON Project: Long-Term Exposure. Corrosion. 2016; 72(6): 824-833. DOI: 10.5006/1893.

Xiao T, Du C, Liu Y. Electrochemical Evaluation on Corrosion Behavior of SAF 2507 Duplex Stainless Steels in Blended Concrete with Metakaolin and ultrafine Slag Admixtures. International Journal of Electrochemical Science. 2021; 16: 210642. DOI: 10.20964/2021.06.15.

Landa-Ruiz L, Croche R, Santiago-Hurtado G, Moreno-Landeros V, Cuevas J, Méndez CT, Jara-Díaz M, et. al. Evaluation of the Influence of the Level of Corrosion of the Reinforcing Steel in the Moment-Curvature Diagrams of Rectangular Concrete Columns. European Journal of Engineering and Technology Research. 2021; 6(3): 139-145. DOI: 10.24018/ejeng.2021.6.3.2423.

Raczkiewicz W. Use of polypropylene fibres to increase the resistance of reinforcement to chloride corrosion in concretes. Science and Engineering of Composite Materials. 2021; 28(1): 555–567. DOI: 10.1515/secm-2021-0053.

Landa-Sánchez A, Bosch J, Baltazar-Zamora MA, Croche R, Landa-Ruiz L, Santiago-Hurtado G, Moreno-Landeros VM, et. al. Corrosion Behavior of Steel-Reinforced Green Concrete Containing Recycled Coarse Aggregate Additions in Sulfate Media. Materials (Basel). 2020; 13(19): 1-22. DOI: 10.3390/ma13194345.

Rameshkumar M, Malathy R, Chandiran P, Paramasivam S, Chung IM, Kim SH, Prabakaran M. Study on Flexural Behaviour of Ferrocement Composites Reinforced with Polypropylene Warp Knitted Fabric. Polymers. 2022; 14(19): 4093. DOI: 10.3390/polym14194093.

Baltazar-Zamora MA, Santiago-Hurtado G, Gaona-Tiburcio C, Maldonado-Bandala EE, Barrios-Durstewist CP, Núñez-J RE, Pérez-López T, et. al. Evaluation of the corrosion at early age in reinforced concrete exposed to sulfates. International Journal of Electrochemical Science. 2012; 7(1): 588-600.

Zhang Q, Li H, Feng H, Jiang T. Effect of Bagasse Ash Admixture on Corrosion Behavior of Low Carbon Steel Reinforced Concrete in Marine Environment. International Journal of Electrochemical Science. 2020; 15(7): 6135–6142. DOI: 10.20964/2020.07.65.

Santiago-Hurtado G, Baltazar-Zamora MA, Galván-Martínez R, López L LD, Zapata G F, Zambrano P, Gaona-Tiburcio C, et. al. Electrochemical Evaluation of Reinforcement Concrete Exposed to Soil Type SP Contaminated with Sulphates. International Journal of Electrochemical Science. 2016; 11(6): 4850-4864. DOI: 10.20964/2016.06.31.

Pan C, Li X, Mao J. The effect of a corrosion inhibitor on the rehabilitation of reinforced concrete containing sea sand and seawater. Materials. 2020; 13:1480. DOI: 10.3390/ma13061480.

Landa-Ruiz L, Ariza-Figueroa H, Santiago-Hurtado G, Moreno-Landeros V, López Meraz R, Villegas-Apaez R, Márquez-Montero S, et. al. Evaluation of the Behavior of The Physical and Mechanical Properties of Green Concrete Exposed to Magnesium Sulfate. European Journal of Engineering Research and Science. 2020; 5(11): 1353-1356. DOI: 10.24018/ejeng.2020.5.11.2241.

Gaona Tiburcio C, Samaniego-Gámez O, Jáquez-Muñoz JM, Baltazar-Zamora MA, Landa-Ruiz L, Lira-Martínez A, Flores-De los Rios JP, et. al. Frequency-Time Domain Analysis of Electrochemical Noise of Passivated AM350 Stainless Steel for Aeronautical Applications. International Journal of Electrochemical Science. 2022; 17(9): 220950. DOI: 10.20964/2022.09.49.

Baltazar-Zamora MA, Mendoza-Rangel JM, Croche R, Gaona-Tiburcio C, Hernández C, López L, Olguín F, et. al. Corrosion Behavior of Galvanized Steel Embedded in Concrete Exposed to Soil Type MH Contaminated with Chlorides. Frontiers in Materials. 2019; 6: 1-12. DOI: 10.3389/fmats.2019.00257.

Roventi G, Bellezze T, Giuliani G, Conti C. Corrosion resistance of galvanized steel reinforcements in carbonated concrete: Effect of wet-dry cycles in tap water and in chloride solution on the passivating layer. Cement and Concrete Research. 2014; 65: 76–84. DOI: j.cemconres.2014.07.014.

Santiago-Hurtado G, Baltazar-Zamora MA, Olguin-Coca J, López L LD, Galván-Martínez R, Ríos-Juárez A, Gaona-Tiburcio C, et. al. Electrochemical Evaluation of a Stainless Steel as Reinforcement in Sustainable Concrete Exposed to Chlorides. International Journal of Electrochemical Science. 2016;11(4):2994-3006. DOI: 10.20964/110402994.

Yeomans SR. Performance of Black, Galvanized, and Epoxy-Coated Reinforcing Steels in Chloride-Contaminated Concrete. Corrosion. 1994; 50(1): 72–81.

Baltazar-Zamora MA, Santiago-Hurtado G, Moreno L VM, Croche B R, de la Garza M, Estupiñan L F, Zambrano R P, et. al, Electrochemical Behaviour of Galvanized Steel Embedded in Concrete Exposed to Sand Contaminated with NaCl. International Journal of Electrochemical Science. 2016; 11(12): 10306-10319. DOI: 10.20964/2016.12.28.

Dehwah HAF, Maslehuddin M, Austin SA. Long-term effect of sulfate ions and associated cation type on chloride-induced reinforcement corrosion in Portland cement concretes. Cement and Concrete Composites. 2002; 24(1): 17–25. DOI: 10.1016/S0958-9465(01)00023-3.

Baltazar-Zamora MA, Ariza-Figueroa H, Landa-Ruiz L, Croche R. Electrochemical Evaluation of AISI 304 SS and Galvanized Steel in Ternary Ecological Concrete based on Sugar Cane Bagasse Ash and Silica Fume (SCBA-SF) exposed to Na2SO4. European Journal of Engineering Research and Science. 2020; 5(3): 353-357. DOI: 10.24018/ejeng.2020.5.3.1852.

Wang D, Zhao X, Meng Y, Chen Z. Durability of concrete containing ?y ash and silica fume against combined freezing-thawing and sulfate attack. Construction and Building Materials. 2017; 147: 398–406. DOI: 10.1016/j.conbuildmat.2017.04.172.

Liang MT, Lan JJ. Reliability analysis for the existing reinforced concrete pile corrosion of bridge substructure. Cement and Concrete Research. 2005; 35(3): 540–550. DOI: 10.1016/j.cemconres.2004.05.010.

Baltazar-Zamora MA, Landa-Ruiz L, Rivera Y, Croche R. Electrochemical Evaluation of Galvanized Steel and AISI 1018 as Reinforcement in a Soil Type MH. European Journal of Engineering Research and Science. 2020;5(3):259-263. DOI: 10.24018/ejeng.2020.5.3.1789.

Farhangi V, Karakouzian M. Effect of ?ber reinforced polymer tubes ?lled with recycled materials and concrete on structural capacity of pile foundations. Applied Sciences. 2020; 10: 1554. DOI: 10.3390/app10051554.

Landa-Gómez A. Croche B R, Márquez-Montero S, Galvan-Martínez R, Gaona-Tiburcio C, Almeraya-Calderón F, Baltazar-Zamora MA. Correlation of Compression Resistance and Rupture Module of a Concrete of Ratio w/c= 0.50 with the Corrosion Potential, Electrical Resistivity and Ultrasonic Pulse Speed. ECS Transactions. 2018;84(1):217-227.

Cosoli G, Mobili A, Tittarelli F, Revel GM, Chiariotti P. Electrical Resistivity and Electrical Impedance Measurement in Mortar and Concrete Elements: A Systematic Review. Applied Sciences. 2020;10: 9152. DOI: 10.3390/app10249152.

Baltazar-Zamora MA, Bastidas DM, Santiago-Hurtado G, Mendoza-Rangel JM, Gaona-Tiburcio C, Bastidas JM, Almeraya-Calderón F. Effect of Silica Fume and Fly Ash Admixtures on the Corrosion Behavior of AISI 304 Embedded in Concrete Exposed in 3.5% NaCl Solution. Materials (Basel). 2019; 12(23): 1-13. DOI: 10.3390/ma12234007.

Figueira RB. Electrochemical sensors for monitoring the corrosion conditions of reinforced concrete structures: A review. Applied Sciences. 2017; 7: 1157. DOI: 10.3390/app7111157.

Landa-Ruiz L, Landa-Gómez A, Mendoza-Rangel JM, Landa-Sánchez A, Ariza-Figueroa H, Méndez-Ramírez CT, Santiago-Hurtado G, et al. Physical, Mechanical and Durability Properties of Ecofriendly Ternary Concrete Made with Sugar Cane Bagasse Ash and Silica Fume. Crystals, 2021; 11(9): 1012. https://doi.org/10.3390/cryst11091012.

Ormellese M, Berra M, Bolzoni F, Pastore T. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures. Cement and Concrete Research. 2006; 36(3): 536–547. DOI: j.cemconres.2005.11.007.

M.A. Baltazar-Zamora et. al. Efficiency of Galvanized Steel Embedded in Concrete Previously Contaminated with 2, 3 and 4% of NaCl. International Journal of Electrochemical Science. 2012;7(4):2997-3007.

Shaheen F, Pradhan B. Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions. Cement and Concrete Research. 2017; 91: 73–86. DOI: j.cemconres.2016.10.008.

L. Landa-Ruiz et. al. Electrochemical Corrosion of Galvanized Steel in Binary Sustainable Concrete Made with Sugar Cane Bagasse Ash (SCBA) and Silica Fume (SF) Exposed to Sulfates. Applied Sciences. 2021; 11: 2133. DOI: 10.3390/app11052133.

Burtuujin G, Son D, Jang I, Yi C, Lee H. Corrosion behavior of pre-rusted rebars in cement mortar exposed to harsh environment. Applied Sciences. 2020; 10: 8705. DOI: 10.3390/app10238705.

Baltazar-Zamora MA, Landa-Sánchez A, Landa-Ruiz L, Ariza-Figueroa H, Gallego-Quintana P, Ramírez-García A, Croche R, et. al. Corrosion of AISI 316 Stainless Steel Embedded in Sustainable Concrete made with Sugar Cane Bagasse Ash (SCBA) Exposed to Marine Environment. European Journal of Engineering Research and Science. 2020; 5(2): 127-131. DOI: 10.24018/ejers.2020.5.2.1751.

Xu P, Jiang L, Guo M, Zha J, Chen L, Chen C, Xu N. In?uence of sulfate salt type on passive ?lm of steel in simulated concrete pore solution. Construction and Building Materials. 2019; 223: 352–359. DOI: j.conbuildmat.2019.06.209.

Baltazar-Zamora MA, Landa-Ruiz L, Landa-Gómez AE, Santiago-Hurtado G, Moreno-Landeros V, Méndez Ramírez CT, Fernandez Rosales V, et al. Corrosion of AISI 316 Stainless Steel Embedded in Green Concrete with Low Volume of Sugar Cane Bagasse Ash and Silica Fume exposed in Seawater. European Journal of Engineering and Technology Research. 2022;7(1):57-62. DOI: 10.24018/ejeng.2022.7.1.2716

Abdall TA, Koteng DO, Shitote SM, Matallah M. Mechanical and durability properties of concrete incorporating silica fume and a high volume of sugarcane bagasse ash. Results in Engineering. 2022;16:1-13. DOI:10.1016/j.rineng.2022.100666

Landa-Ruiz L, Márquez-Montero S, Santiago-Hurtado G, Moreno-Landeros V, Mendoza-Rangel JM, Baltazar-Zamora MA. Effect of the Addition of Sugar Cane Bagasse Ash on the Compaction Properties of a Granular Material Type Hydraulic Base. European Journal of Engineering and Technology Research. 2021; 6(1): 76–79. DOI: 10.24018/ejeng.2021.6.1.2335.

Abdall TA, Koteng DO, Shitote SM, Matallah M. Mechanical Properties of Eco-friendly Concrete Made with Sugarcane Bagasse Ash. Civil Engineering Journal. 2022; 8(6):1227-1239. DOI: 10.28991/CEJ-2022-08-06-010.

Ojeda-Farías O, Mendoza-Rangel JM, Baltazar-Zamora MA. Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. Revista ALCONPAT. 2018;8(2):194-208. DOI: 10.21041/ra.v8i2.282.

ACI. Provision of mixtures, normal concrete, heavy and massive ACI 211.1, Ed. IMCYC, Mexico; 2004: 29.

ASTM C29 / C29M–07–Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate; ASTM International, West Conshohocken, PA; 2007. Retrieved from: www.astm.org.

ASTM C127–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate; ASTM International, West Conshohocken, PA; 2015. Retrieved from: www.astm.org.

ASTM C128–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate; ASTM International, West Conshohocken, PA; 2015. Retrieved from: www.astm.org.

ASTM C136 / C136M –14–Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates; ASTM International, West Conshohocken, PA; 2014. Retrieved from: www.astm.org.

NMX-C-156-ONNCCE-2010. Determinación del revenimiento en el concreto fresco. ONNCCE S.C., México; 2010.

ASTM C 1064/C1064M - 08 Standard. Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete. ASTM International, West Conshohocken, PA; 2008. Retrieved from: www.astm.org.

NMX-C-162-ONNCCE-2014: Determinación de la masa unitaria, cálculo del rendimiento y contenido de aire del concreto fresco por el método gravimétrico., ONNCCE S.C., México; 2014.

NMX-C-083-ONNCCE-2014: Determinación de la resistencia a la compresión de especímenes – Método de prueba, ONNCCE S.C., México; 2014.

Santiago-Hurtado G, Baltazar-Zamora MA, Galindo D A, Cabral M JA, Estupiñán LFH, Zambrano Robledo P, Gaona-Tiburcio C. Anticorrosive Efficiency of Primer Applied in Carbon Steel AISI 1018 as Reinforcement in a Soil Type MH. International Journal of Electrochemical Science. 2013; 8(6): 8490-8501.

ASTM G 59-97. Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, PA; 2014. Retrieved from: www.astm.org.

Barrios Durstewitz CP, Baldenebro López FJ, Núñez Jaquez RE, Fajardo G, Almeraya F, Maldonado-Bandala E, Baltazar-Zamora M, et al. Cement Based Anode in the Electrochemical Realkalisation of Carbonated Concrete. International Journal of Electrochemical Science. 2012; 7(4):3 178–3190.

Feliu S, González JA, Andrade C, Techniques to Assess the Corrosion Activity of Steel Reinforced Concrete Structures, ASTM STP 1276. ASTM, 1996.

Gaona-Tiburcio C, Montoya-Rangel M, Cabral-Miramontes JA, Estupiñan-López F, Zambrano-Robledo P, Orozco Cruz R, Chacón-Nava JG, et al. Corrosion Resistance of Multilayer Coatings Deposited by PVD on Inconel 718 Using Electrochemical Impedance Spectroscopy Technique. Coatings. 2020; 10: 521. DOI. 10.3390/coatings10060521.

Cabral-Miramontes JA, Bastidas DM, Baltazar MA, Zambrano-Robledo P, Bastidas JM, Almeraya-Calderón FM, Gaona-Tiburcio C. Corrosion behavior of Zn-TiO2 and Zn-ZnO Electrodeposited Coatings in 3.5% NaCl solution. International Journal of Electrochemical Science. 2019; 14(5): 4226–4239. DOI: 10.20964/2019.05.10.

ASTM C 876-15, Standard Test Method for Corrosion potentials of uncoated reinforcing steel in concrete, ASTM; 2015.

Song HW, Saraswathy V. Corrosion Monitoring of Reinforced Concrete Structures: A Review. International Journal of Electrochemical Science. 2007; 2(1):1-28.

Troconis De Rincón O, Helene P, Castro P, Andrade C. Manual de Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Hormigón Armado. Red DURAR. CYTED. Venezuela; 1997: 134.

Ariza-Figueroa HA, Bosch J, Baltazar-Zamora MA, Croche R, Santiago-Hurtado G, Landa-Ruiz L, Mendoza-Rangel JM, Bastidaset JM, et al. Corrosion Behavior of AISI 304 Stainless Steel Reinforcements in SCBA-SF Ternary Ecological Concrete Exposed to MgSO4. Materials (Basel). 2020; 13(10): 1-16. DOI: 10.3390/ma13102412.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Baltazar-García, B.P., Baltazar-Zamora, D.F., Landa-Ruiz, L., Méndez, C.T., Solorzano, R., Estupiñan López, F.H., Croche, R., Santiago-Hurtado, G., Moreno-Landeros, V., Gaona-Tiburcio, C., Almeraya-Calderón, F. and Baltazar-Zamora, M.A. 2022. Eco-Friendly Concrete Made with System CPC-SCBASF As a Protector Against Sulfate Corrosion of Reinforcing Steel AISI 1018. European Journal of Engineering and Technology Research. 7, 6 (Nov. 2022), 14–20. DOI:https://doi.org/10.24018/ejeng.2022.7.6.2911.

Most read articles by the same author(s)