Universidad Veracruzana, México
Universidad Veracruzana, Mexico
Universidad Autónoma de Coahuila, México
Universidad Autónoma de Coahuila, México
Universidad Veracruzana, Mexico
Universidad Veracruzana, Mexico
Universidad Veracruzana, Mexico
* Corresponding author

Article Main Content

In the present work, it is proposed to include in the theoretical curves of moment-curvature (m- ?) the effect of corrosion by obtaining the decrease in the area of longitudinal reinforcing steel. The corrosion depth will be obtained from the crack width and corrosion length observed in the cover concrete. With the depth of corrosion, the area of steel that is lost will be obtained and this modification will be incorporated into the theoretical procedure to elaborate the m- ? curves. The forces of the steel will be obtained from an elastoplastic model with curved hardening and the forces of the concrete with a model that considers the effect of confinement.

References

  1. G. Cosoli, A. Mobili, N. Giulietti, P. Chiariotti, G. Pandarese, F. Tittarelli, T. Bellezze, N. Mikanovic, G.M. Revel. (2020). Performance of concretes manufactured with newly developed low-clinker cements exposed to water and chlorides: Characterization by means of electrical impedance measurements. Construction and Building Materials. 271, 121546.
     Google Scholar
  2. Miguel Angel Baltazar-Zamora, José Manuel Mendoza-Rangel, René Croche, Citlalli Gaona-Tiburcio, Cindy Hernández, Luis López, Francisco Olguín, Facundo Almeraya-Calderón. (2019). Corrosion Behavior of Galvanized Steel Embedded in Concrete Exposed to Soil Type MH Contaminated with Chlorides. Frontiers in Materials, 6, pp. 1-12.
     Google Scholar
  3. C. Pan, X. Li, J. Mao. (2020). The effect of a corrosion inhibitor on the rehabilitation of reinforced concrete containing sea sand and seawater. Materials. 13, 1480.
     Google Scholar
  4. G. Santiago-Hurtado et. al. (2016). Electrochemical Evaluation of a Stainless Steel as Reinforcement in Sustainable Concrete Exposed to Chlorides. International Journal of Electrochemical Science, 11:4, pp. 2994-3006.
     Google Scholar
  5. H.A.F. Dehwah, M. Maslehuddin, S.A. Austin. (2002). Long-term effect of sulfate ions and associated cation type on chloride-induced reinforcement corrosion in Portland cement concretes. Cement and Concrete Composites. 24, pp. 17–25.
     Google Scholar
  6. M.A. Baltazar-Zamora et. al. (2012). Efficiency of Galvanized Steel Embedded in Concrete Previously Contaminated with 2, 3 and 4% of NaCl. International Journal of Electrochemical Science, 7:4, pp. 2997-3007.
     Google Scholar
  7. S.R. Yeomans. (1994). Performance of Black, Galvanized, and Epoxy-Coated Reinforcing Steels in Chloride- Contaminated Concrete. Corrosion. 50, pp.72–81.
     Google Scholar
  8. M.A. Baltazar-Zamora, D.M. Bastidas, G. Santiago-Hurtado, J.M. Mendoza-Rangel, C. Gaona-Tiburcio, J.M. Bastidas, F. Almeraya-Calderón. (2019). Effect of Silica Fume and Fly Ash Admixtures on the Corrosion Behavior of AISI 304 Embedded in Concrete Exposed in 3.5% NaCl Solution. Materials (Basel), 12:23, pp. 1-13.
     Google Scholar
  9. F. Shaheen, B. Pradhan. (2017). Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions. Cement and Concrete Research. 91, pp. 73–86.
     Google Scholar
  10. Miguel Angel Baltazar-Zamora, Abigail Landa-Sánchez, Laura Landa-Ruiz, Hilda Ariza-Figueroa, Pedro Gallego-Quintana, Aldo Ramírez-García, René Croche, Sabino Márquez-Montero. (2020). Corrosion of AISI 316 Stainless Steel Embedded in Sustainable Concrete made with Sugar Cane Bagasse Ash (SCBA) Exposed to Marine Environment. European Journal of Engineering Research and Science, 5:2, pp. 127-131.
     Google Scholar
  11. G. Roventi, T. Bellezze, G. Giuliani, C. Conti. (2014) Corrosion resistance of galvanized steel reinforcements in carbonated concrete: Effect of wet–dry cycles in tap water and in chloride solution on the passivating layer. Cement and Concrete Research. 65, pp. 76–84.
     Google Scholar
  12. M.A. Baltazar-Zamora, G. Santiago-Hurtado, V.M. Moreno L, R. Croche B, M. de la Garza, F. Estupiñan L, P. Zambrano R., C. Gaona-Tiburcio. (2016). Electrochemical Behaviour of Galvanized Steel Embedded in Concrete Exposed to Sand Contaminated with NaCl. International Journal of Electrochemical Science, 11:12, pp. 10306-10319.
     Google Scholar
  13. D. Wang, X. Zhao, Y. Meng, Z. Chen. (2017). Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack. Construction and Building Materials. 147, pp. 398–406.
     Google Scholar
  14. M.A. Baltazar-Zamora, G. Santiago-Hurtado, C. Gaona-Tiburcio et. al. (2012). Evaluation of the corrosion at early age in reinforced concrete exposed to sulfates. International Journal of Electrochemical Science, 7:1, pp. 588-600.
     Google Scholar
  15. V.V. Praveen, D. Ravi. (2019). Influence of supplementary cementitious materials on strengthand durability characteristics of concrete. Advanced in Concrete Construction. 7, pp. 75–85.
     Google Scholar
  16. G. Santiago-Hurtado et. al. (2016). Electrochemical Evaluation of Reinforcement Concrete Exposed to Soil Type SP Contaminated with Sulphates. International Journal of Electrochemical Science, 11:6, pp. 4850-4864.
     Google Scholar
  17. G. Burtuujin, D. Son, I. Jang, C. Yi, H. Lee. (2020). Corrosion behavior of pre-rusted rebars in cement mortar exposed to harsh environment. Applied Sciences. 10, 8705.
     Google Scholar
  18. Abigail Landa-Sánchez et. al. (2020). Corrosion Behavior of Steel-Reinforced Green Concrete Containing Recycled Coarse Aggregate Additions in Sulfate Media. Materials (Basel), 13:19, pp. 1-22.
     Google Scholar
  19. M.L. Berndt. (2009). Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Construction and Building Materials, 23:7, pp. 2606–2613.
     Google Scholar
  20. Hilda A. Ariza-Figueroa et. al. (2020). Corrosion Behavior of AISI 304 Stainless Steel Reinforcements in SCBA-SF Ternary Ecological Concrete Exposed to MgSO4. Materials (Basel), 13:10, pp. 1-16.
     Google Scholar
  21. P. Xu, L. Jiang, M. Guo, J. Zha, L. Chen, C. Chen, N. Xu. (2019). Influence of sulfate salt type on passive film of steel in simulated concrete pore solution. Construction and Building Materials. 223, pp. 352–359.
     Google Scholar
  22. Miguel Angel Baltazar-Zamora, Hilda Ariza-Figueroa, Laura Landa-Ruiz, and René Croche. (2020). Electrochemical Evaluation of AISI 304 SS and Galvanized Steel in Ternary Ecological Concrete based on Sugar Cane Bagasse Ash and Silica Fume (SCBA-SF) exposed to Na2SO4. European Journal of Engineering Research and Science, 5:3, pp. 353-357.
     Google Scholar
  23. B. Pradhan. (2014). Corrosion behavior of steel reinforcement in concrete exposed to composite chloride–sulfate environment. Construction and Building Materials. 72, pp. 398–410.
     Google Scholar
  24. Laura Landa-Ruiz et. al. (2021). Electrochemical Corrosion of Galvanized Steel in Binary Sustainable Concrete Made with Sugar Cane Bagasse Ash (SCBA) and Silica Fume (SF) Exposed to Sulfates. Applied Sciences. 11, 2133.
     Google Scholar
  25. M. Ormellese, M. Berra, F. Bolzoni, T. Pastore. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures. Cement and Concrete Research. 36, pp. 536–547.
     Google Scholar
  26. V. Volpi-León, L.D. López-Léon, J. Hernández-Ávila, M.A. Baltazar-Zamora, F.J. Olguín-Coca, A.L. López-León. (2017). Corrosion study in reinforced concrete made with mine waste as mineral additive. International Journal of Electrochemical Science, 12:1, pp. 22-31.
     Google Scholar
  27. W. Raczkiewicz, A. Wójcicki. (2020). Temperature Impact on the Assessment of Reinforcement Corrosion Risk in Concrete by Galvanostatic Pulse Method. Applied Sciences. 10, 1089.
     Google Scholar
  28. Miguel Angel Baltazar-Zamora, Sabino Márquez-Montero, Laura Landa-Ruiz, René Croche, Oscar López-Yza. (2020). Effect of the type of curing on the corrosion behavior of concrete exposed to urban and marine environment. European Journal of Engineering Research and Science, 5:1, pp. 91-95.
     Google Scholar
  29. R. E. Melchers, C.Q. Li. (2009). Reinforcement corrosion initiation and activation times in concrete structures exposed to severe marine environments. Cement and Concrete Research. 39, pp. 1068–1076.
     Google Scholar
  30. O. Troconis de Rincón et. al., (2016). Reinforced Concrete Durability in Marine Environments DURACON Project: Long-Term Exposure. Corrosion, 72:6, pp. 824-833.
     Google Scholar
  31. G. Cosoli, A. Mobili, F. Tittarelli, G.M. Revel, P. Chiariotti. (2020). Electrical Resistivity and Electrical Impedance Measurement in Mortar and Concrete Elements: A Systematic Review. Applied Sciences. 10, 9152.
     Google Scholar
  32. G. Santiago-Hurtado et. al. (2012). Electrochemical Behavior of Reinforced Concrete and Its Relation with the Environment of Xalapa, Veracruz. International Journal of Electrochemical Science, 7:10, pp. 9825-9834.
     Google Scholar
  33. M.T. Liang, J.J. Lan. (2005). Reliability analysis for the existing reinforced concrete pile corrosion of bridge substructure. Cement and Concrete Research. 35, pp. 540–550.
     Google Scholar
  34. Laura Landa-Ruiz, Sabino Márquez-Montero, Griselda Santiago-Hurtado, Victor Moreno-Landeros, José Manuel Mendoza-Rangel, and Miguel Angel Baltazar-Zamora. (2021). Effect of the Addition of Sugar Cane Bagasse Ash on the Compaction Properties of a Granular Material Type Hydraulic Base. European Journal of Engineering and Technology Research, 6:1, pp. 76–79.
     Google Scholar
  35. O. Ojeda-Farías, J.M. Mendoza-Rangel, M.A. Baltazar-Zamora. (2018). Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. Revista ALCONPAT, 8:2, pp. 194-208.
     Google Scholar
  36. S.D. Cramer, B.S. Covino, S.J. Bullard, G.R. Holcomb, J.H. Russell, F.J. Nelson, H.M. Laylor, S, M. Soltesz. (2002). Corrosion prevention and remediation strategies for reinforced concrete coastal bridge. Cement and Concrete Composites. 24, pp. 101–117.
     Google Scholar
  37. Laura Landa-Ruiz, Hilda Ariza-Figueroa, Griselda Santiago-Hurtado, Victor Moreno-Landeros, Raul López Meraz, Rafael Villegas-Apaez, Sabino Márquez-Montero, René Croche, Miguel Angel Baltazar-Zamora. (2020). Evaluation of the Behavior of The Physical and Mechanical Properties of Green Concrete Exposed to Magnesium Sulfate. European Journal of Engineering Research and Science, 5:11, pp. 1353-1356.
     Google Scholar
  38. R.B. Figueira. (2017). Electrochemical sensors for monitoring the corrosion conditions of reinforced concrete structures: A review. Applied Sciences. 7, 1157.
     Google Scholar
  39. Miguel Angel Baltazar-Zamora, Laura Landa-Ruiz, Yazmin Rivera, René Croche. (2020). Electrochemical Evaluation of Galvanized Steel and AISI 1018 as Reinforcement in a Soil Type MH. European Journal of Engineering Research and Science, 5:3, pp. 259-263.
     Google Scholar
  40. V. Farhangi, M. Karakouzian. (2020). Effect of fiber reinforced polymer tubes filled with recycled materials and concrete on structural capacity of pile foundations. Applied Sciences. 10, 1554.
     Google Scholar
  41. G. Santiago-Hurtado, M.A. Baltazar-Zamora, A. Galindo D, J.A. Cabral M, F.H. Estupiñán L., P. Zambrano Robledo, C. Gaona-Tiburcio. (2013). Anticorrosive Efficiency of Primer Applied in Carbon Steel AISI 1018 as Reinforcement in a Soil Type MH. International Journal of Electrochemical Science, 8:6, pp. 8490-8501.
     Google Scholar
  42. C.P. Barrios Durstewitz, F.J. Baldenebro López, R.E. Núñez Jaquez, G. Fajardo, F. Almeraya, E. Maldonado-Bandala, M. Baltazar-Zamora, J.H. Castorena. (2012). Cement Based Anode in the Electrochemical Realkalisation of Carbonated Concrete. International Journal of Electrochemical Science, 7:4, pp. 3178 - 3190.
     Google Scholar
  43. A. Landa-Gómez et.al., (2018). Corrosion Behavior 304 and 316 Stainless Steel as Reinforcement in Sustainable Concrete Based on Sugar Cane Bagasse Ash Exposed to Na2SO4. ECS Transactions. 84, pp. 179-188.
     Google Scholar
  44. W. Raczkiewicz, P.G. Kossakowski. (2019). Electrochemical diagnostics of sprayed fiber-reinforced concrete corrosion. Applied Sciences. 9, 3763.
     Google Scholar
  45. A. Landa-Gómez et.al., (2018). Correlation of Compression Resistance and Rupture Module of a Concrete of Ratio w/c= 0.50 with the Corrosion Potential, Electrical Resistivity and Ultrasonic Pulse Speed. ECS Transactions. 84, 217-227.
     Google Scholar
  46. M. Baltazar, F. Almeraya, D. Nieves, A. Borunda, E. Maldonado, A. Ortiz. (2007). Corrosión del acero inoxidable 304 como refuerzo en concreto expuesto a cloruros y sulfatos. Scientia Et Technica, 13:36, pp. 353-357.
     Google Scholar
  47. J.B. Mander, M.J.N. Priestley, R. Park. (1988). Theoretical Stress-Strain model for confined concrete. Journal of Structural Engineering. 114, pp. 1804-1826.
     Google Scholar
  48. C.J. Mendoza, C. Aire, J. López, F. Hernández. (2013), Propiedades mecánicas de barras de refuerzo grados 4, 52 y 56. Instituto de Ingeniería, UNAM.
     Google Scholar
  49. J. Castorena. (2007). Daño por corrosión en estructuras de concreto reforzado a partir del ancho de grieta. Tesis Doctoral. Centro de Investigación en Materiales Avanzados, Chihuahua, México, pp. 100.
     Google Scholar
  50. Normas Técnicas Complementarias para el Diseño y Construcción de Estructuras de Concreto. (2017). Gaceta Oficial de la Ciudad de México. México, México.
     Google Scholar
  51. M. J. N., Priestley, F. Seible, G.M. Calvi. (1996). Seismic Design and Retrofit of Bridges. A Wiley-Interscience Publication. Jonh Wiley & Sons, Inc. Nueva Jersey, U.S.A.
     Google Scholar
  52. M. Jara. (2004). Procedimiento de diseño sísmico basado en desplazamientos, para puentes con aisladores de base histeréticos. Tesis Doctoral, Universidad Politécnica de Cataluña, Barcelona, España. pp. 149.
     Google Scholar
  53. A. H. Nilson. (1997). Design of Concrete Structures. McGraw-Hill Companies, U.S.A.
     Google Scholar
  54. R. Park, T. Paulay. (1980). Estructuras de Concreto Reforzado. Editorial Limusa, México, México.
     Google Scholar
  55. T. Vidal, A. Castel, R. Francois, R. (2004). Analyzing crack width to predict corrosion in reinforced concrete. Cement and Concrete Composites. 22, pp. 407-415.
     Google Scholar


Most read articles by the same author(s)

1 2 > >>