##plugins.themes.bootstrap3.article.main##

The study was conducted to measure and evaluate particulate emissions and carbonyl compounds from KAMA - KDE3500T generator at medium load mode (1.5 kW load). Using commercial diesel fuel 0.05 S and biodiesel palm oil with different mixing ratios are: 0%, 10%, 20%, 30%, 50%, 75% and 100% for B0, B10, B20, B30, B50, B75 and B100. Experimental results showed that: dust emission concentration decreased from B0 to B20 and increased from B30 to B100 namely 348.65 mg / m3, 297.27 mg / m3, 168.59 mg / m3, 169.74 mg / m3, 259.98 mg / m3, 330.30 mg / m3, 522.98 mg / m3 respectively for B0, B10, B20, B30, B50, B75, B100.  Carbonyl emission concentrations increased from B0 to B30 and abruptly decreased at B50 and gradually increased at B75 and B100 specific figures as follows: 67.99 mg / m3, 87.35 mg / m3, 99.10 mg / m3, 100.96 mg / m3, 65.79 mg / m3, 102.32 mg / m3, 102.38 mg / m3 respectively for B0, B10, B20, B30, B50, B75 and B100. High concentrations of carbonyl compounds are formaldehyde, acetaldehyde and acetone.

Downloads

Download data is not yet available.

References

  1. A. T. Hoang, V. V. Le, V. V. Pham, and B. C. Tham, “An investigation of deposit formation in the injector, spray characteristics, and performance of a diesel engine fueled with preheated vegetable oil and diesel fuel,” Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–13, 2019.
     Google Scholar
  2. A. T. Hoang, A. T. Le, and V. V. Pham, “A core correlation of spray characteristics, deposit formation, and combustion of a high-speed diesel engine fueled with Jatropha oil and diesel fuel,” Fuel, vol. 244, pp. 159–175, 2019.
     Google Scholar
  3. A. T. Hoang, V. D. Tran, V. H. Dong, and A. T. Le, “An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel,” J. Mar. Eng. Technol., pp. 1–9, 2019.
     Google Scholar
  4. V. V. Pham, “Research and Design an Experimental Model for the Determination of Deposits Formation Mechanism in the Combustion Chamber,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 2, pp. 656–663, 2019.
     Google Scholar
  5. A. T. Hoang and D. N. Cao, “Some methods of reducing NOx components in exhaust gas,” Int. J. Eng. Res. Manag. Stud., vol. 4, no. 5, pp. 11–18, 2017.
     Google Scholar
  6. A. T. Hoang, “A report of the oil spill recovery and treatment technologies to reduce the marine environment pollution,” Int. J. e-Navigation Marit. Econ., vol. 9, pp. 35–49, 2018.
     Google Scholar
  7. A. T. Hoang and X. D. Pham, “An investigation of remediation and recovery of oil spill and toxic heavy metal from maritime pollution by a new absorbent material,” J. Mar. Eng. Technol., 2018.
     Google Scholar
  8. A. T. Hoang, X. L. Bui, and X. D. Pham, “A novel investigation of oil and heavy metal adsorption capacity from as-fabricated adsorbent based on agricultural by-product and porous polymer,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 40, no. 8, pp. 929–939, 2018.
     Google Scholar
  9. V. V. Pham, “Research on the application of Diesel-Rk in the calculation and evaluation of technical and economic criteria of marine diesel engines using the unified ULSD and Biodiesel blended fuel,” J. Mech. Eng. Res. Dev., vol. 42, no. 2, pp. 87–97, 2019.
     Google Scholar
  10. A. T. Hoang, “Waste heat recovery from diesel engines based on Organic Rankine Cycle,” Appl. Energy, vol. 231, pp. 138–166, 2018.
     Google Scholar
  11. M. T. Pham, A. T. Hoang, A. T. Le, A. R. M. S. Al-Tawaha, V. H. Dong, and V. V. Le, “Measurement and prediction of the density and viscosity of biodiesel blends,” Int. J. Technol., vol. 9, no. 5, pp. 1015–1026, 2018.
     Google Scholar
  12. A. T. Hoang, “Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system,” J. Mar. Eng. Technol., pp. 1–13, 2018.
     Google Scholar
  13. A. T. Hoang, Q. V Tran, and X. D. Pham, “Performance and emission characteristics of popular 4-stroke motorcycle engine in vietnam fuelled with biogasoline compared with fossil gasoline,” Int. J. Mech. Mechatronics Eng, vol. 18, no. 2, pp. 97–103, 2018.
     Google Scholar
  14. A. T. Hoang and M. T. Pham, “Influences of heating temperatures on physical properties, spray characteristics of bio-oils and fuel supply system of a conventional diesel engine,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 5, pp. 2231–2240, 2018.
     Google Scholar
  15. V. V. Pham and D. T. Cao, “A brief review of technology solutions on fuel injection system of diesel engine to increase the power and reduce environmental pollution,” J. Mech. Eng. Res. Dev., vol. 42, no. 1, pp. 01–09, 2019.
     Google Scholar
  16. A. T. Hoang and V. T. Nguyen, “Emission Characteristics of a Diesel Engine Fuelled with Preheated Vegetable Oil and Biodiesel,” Philipp. J. Sci., vol. 146, no. 4, pp. 475–482, 2017.
     Google Scholar
  17. A. T. Hoang and V. V. Pham, “Impact of jatropha oil on engine performance, emission characteristics, deposit formation, and lubricating oil degradation,” Combust. Sci. Technol., vol. 191, no. 03, pp. 504–519, 2019.
     Google Scholar
  18. A. T. Hoang, M. M. Noor, and X. D. Pham, “Comparative Analysis on Performance and Emission Characteristic of Diesel Engine Fueled with Heated Coconut Oil and Diesel Fuel.,” Int. J. Automot. Mech. Eng., vol. 15, no. 1, pp. 5110–5125, 2018.
     Google Scholar
  19. A. T. Hoang, M. Tabatabaei, and M. Aghbashlo, “A review of the effect of biodiesel on the corrosion behavior of metals/alloys in diesel engines,” Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–21, 2019.
     Google Scholar
  20. T. A. Hoang, N. X. Chu, and T. Van Tran, “The Environmental Pollution In Vietnam: Source, Impact And Remedies,” Transportation (Amst)., vol. 495, no. 112.856, pp. 38–122, 2017.
     Google Scholar
  21. A. T. Hoang, D. Nam Nguyen, and V. V. Pham, “Heat treatment furnace for improving the weld mechanical properties: Design and fabrication,” Int. J. Mech. Eng. Technol., vol. 9, no. 6, 2018.
     Google Scholar
  22. A. T. Hoang, “A Design and Fabrication of Heat Exchanger for Recovering Exhaust Gas Energy from Small Diesel Engine Fueled with Preheated Bio-oils,” Int. J. Appl. Eng. Res., vol. 13, no. 7, pp. 5538–5545, 2018.
     Google Scholar
  23. V. V. Pham, “Analyzing the effect of heated wall surface temperatures on combustion chamber deposit formation,” J. Mech. Eng. Res. Dev., vol. 41, no. 4, pp. 17–21, 2018.
     Google Scholar
  24. A. T. Hoang and V. V. Pham, “A review on fuels used for marine diesel engines,” J. Mech. Eng. Res. Dev., vol. 41, no. 4, pp. 22–32, 2018.
     Google Scholar
  25. A. T. Hoang et al., “An absorption capacity investigation of new absorbent based on polyurethane foams and rice straw for oil spill cleanup,” Pet. Sci. Technol., vol. 36, no. 5, pp. 361–370, 2018.
     Google Scholar
  26. T. A. Hoang and V. Van Le, “The Performance of A Diesel Engine Fueled With Diesel Oil, Biodiesel and Preheated Coconut Oil,” Int. J. Renew. Energy Dev., vol. 6, no. 1, p. 1, 2017.
     Google Scholar
  27. M. Norhafana et al., “A review of the performance and emissions of nano additives in diesel fuelled compression ignition-engines,” in IOP Conference Series: Materials Science and Engineering, 2018, vol. 469, no. 1, p. 12035.
     Google Scholar
  28. A. T. Hoang, C. N. Luong, and A. T. Le, “Properties and Spray Characteristics of Heated Pure Coconut Oil Aiming a Direct Use in Conventional Diesel Engines,” in The 5th TSME International Conference on Mechanical Engineering, 2014.
     Google Scholar
  29. A. T. Hoang et al., “Power generation characteristics of a thermoelectric modules-based power generator assisted by fishbone-shaped fins: Part II–Effects of cooling water parameters,” Energy Sources, Part A Recover. Util. Environ. Eff., pp. 1–13, 2019.
     Google Scholar
  30. A. T. Hoang and D. C. Nguyen, “Properties of DMF-fossil gasoline RON95 blends in the consideration as the alternative fuel,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 6, 2018.
     Google Scholar
  31. A. T. Hoang, “The Performance of Diesel Engine Fueled Diesel Oil in Comparison with Heated Pure Vegetable Oils Available in Vietnam,” J. Sustain. Dev., vol. 10, no. 2, p. 93, 2017.
     Google Scholar
  32. V. V. Le and A. T. Hoang, “Fuel and alternative fuel for marine diesel engines,” Int. J. Recent Eng. Res. Dev., vol. 2, no. 7, pp. 142–146, 2017.
     Google Scholar
  33. V. V. Le, D. C. Nguyen, and A. T. Hoang, “The potential of using the renewable energy aiming at environmental protection,” Int. J. Latest Eng. Res. Appl., vol. 2, no. 7, pp. 54–60, 2017.
     Google Scholar
  34. A. T. Hoang and V. V. Pham, “A study of emission characteristic, deposits, and lubrication oil degradation of a diesel engine running on preheated vegetable oil and diesel oil,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 41, no. 5, pp. 611–625, 2019.
     Google Scholar