##plugins.themes.bootstrap3.article.main##

The extent of lesion achieved during microwave ablation is dependent on some factors which include the time period of application, its intensity, antenna geometry, and relative permittivity of the tissue. Several studies have been conducted on microwave ablation for the treatment of tumours and have focused on different antenna geometries, its intensity, and time of application. This work seeks to find a correlation between the relative permittivity of the catheter and the temperature distribution which determines necrosis of the tissue by using Tefzel ETFE, Teflon FEP, PFA Teflon type A,  PFA Teflon type B, Teflon AF, and PTFE Teflon type B while modelling using COMSOL Multiphysics. The extent of the thermal lesion was observed to be dependent on the relative permittivity of the catheter material, with Tefzel ETFE giving the best performance and Teflon AF providing the least.

Downloads

Download data is not yet available.

References

  1. http:en.m.wikipedia.org/wiki/Human_body_temperature
     Google Scholar
  2. A. Bettaeib, & D. A. Averill-Bates. “Thermotolerance Induced at a Mild Temperature 40°C Alleviates Heat Shock-Induced ER Stress and Apoptosis in HeLa Cells.” Biochimica et Biophysica Acta, vol. 1853, 52-62, 2015
     Google Scholar
  3. F. H. Cornelis, C. Marcelin, & J. C. Bernhard. “Microwave Ablation of Renal Tumors: A Narrative Review of Technical Considerations and Clinical Results.” Diagnostics and Interventional Imaging, vol. 98, 287-297, 2017.
     Google Scholar
  4. E. R. Cosman Jr. & E. R. Cosman Sr. “Electric and Thermal Field Effects in Tissue around Radiofrequency Electrodes.” American Academy of Pain Medicine, vol. 6, 405-424, June, 2005
     Google Scholar
  5. Hyperthermia: Microwaves as Cancer Treatment retrieved from http://ethw.org/w/index.php?title=Hyperthermia:_Microwaves_as_Cancer_Treatment&oldid=154732, on 20/07/2018
     Google Scholar
  6. S. P. Psutka, A. S. Feldman, W. S. McDougal, F. J. McGovern, P. Mueller, & D. A. Gervais. “Long-term Oncologic Outcomes after Radiofrequency Ablation for T1 Renal Cell Carcinoma.” Eur Urol, vol. 63, 486-492, 2013
     Google Scholar
  7. O. Seror. “Ablative Therapies: Advantages and Disadvantages of Radiofrequency, Cryotherapy, Microwave and Electroporation Methods, or How to Choose the Right Method for an Individual Patient?” Diagnostics and Interventional Imaging, vol. 96, 617-624, 2015.
     Google Scholar
  8. J. Yu, P. Liang, X. Yu, F. Liu, L. Chen, & Y. Wang. “A Comparison of Microwave Ablation and Bipolar Radiofrequency Ablation both with an Internally Cooled Probe: Results in Ex Vivo and In Vivo Porcine Livers” European Journal of Radiology, vol. 79, 124-130, January, 2011.
     Google Scholar
  9. J. M. Bertram, D. Yang, M. C. Converse, J. G. Webster & D. M. Mahvi. “Antenna Design for Microwave Hepatic Ablation Using Axisymmetric Electromagnetic Model.” BioMedical Engineering Online, vol. 5(15), 1-9, 2006.
     Google Scholar
  10. L. J. Higgins & K. Hong. “Renal Ablation Techniques: State of the Art.”AJR,, vol. 205, 735-741, 2015.
     Google Scholar
  11. F. Cornelis, P. Balageas, Y. Le Bras, G. Rigou, J. –R. Boutault M. Bouzgarrou, & N. Grenier. “Radiologically-guided Thermal Ablation of Renal Tumors.” Diagnostics and Interventional Imaging, vol. 93, 246-261, 2012.
     Google Scholar
  12. G. Deshazer, P. Prakash, D. Merck, & D. Haemmerich. “Experimental Measurement of Microwave Ablation Heating and Comparison to Computer Simulations.” Int J Hyperthermia, vol. 33, 74-82, January, 2017.
     Google Scholar
  13. A. Z. Ibitoye, T. Orotoye, E. O. Nwoye & M. A. Aweda. “Analysis of Efficiency of Different Antennas for Microwave Ablation Using Simulation and Experimental Methods.” Egyptian Journal of Basic and Applied Sciences, vol. 5, 24-30, 2018.
     Google Scholar
  14. T. J. Vogl, N. N. N. Naguib, T. Lehnert, &N. A. Nour-Eldin. “Radiofrequency, Microwave and Laser Ablation of Pulmonary Neoplasms: Clinical Studies and Technical Considerations – Review Article” European Journal of Radiology, vol. 77, 346-357, 2011
     Google Scholar
  15. C. L. Brace. “Microwave Tissue Ablation: Biophysics, Technology and Applications” Crit RevBiomed Eng., vol. 38(1), 65-78, 2010.
     Google Scholar
  16. H. Gao, S. Wu, X. Wang, R. Hu, Z. Zhou, & X. Sun. “Temperature Simulation of Microwave Ablation Based on Improved Specific Absorption Rate Compared to Phantom Measurements.” Computer Assisted Surgery, vol. 22(S1), 9-17, 2017.
     Google Scholar
  17. C. L. Brace. “Radiofrequency and Microwave Ablation of the Liver, Lung, Kidney and Bone: What are the Differences:” Curr Probl Diagn Radiol., vol. 38(3), 135-143, 2009.
     Google Scholar
  18. M. Alonzo, A. Bos, S. Bennett, & H. Ferral. “The Emprint Ablation System with Thermosphere Technology: One of the NewerNext-Generation Microwave Ablation Technologies.” Semin Intervent Radiol, vol. 32, 335-338, 2015
     Google Scholar
  19. G. C. Hui, K. Tuncali, S. Tatli, P. R. Morrison, & S. G. Siverman. “Comparison of Percutaneous and Surgical Approaches to Renal Tumors Ablation.” J Vasc Interv Radiol., vol. 19(9), 1311-1320, 2008
     Google Scholar
  20. S. L. Woldu, G. R. Thoreson Z. Okhunov, R. Ghandour, M. B. Rothberg, A. RoyChoudhury, H. H. Kin, M. Bozoghlanian, J. H. Newhouse, M. A. Helmy, K. K. Badana, J. Landman, J. A. Cadeddu, & J. M. McKieman. “Comparison of Renal Parenchymal Volume Preservation Between Partial Nephrectomy, Croablation, and Radiofrequency Ablation Using 3D Volume Measurements.” J Endourol., vol. 29(8), 948-955, 2015
     Google Scholar
  21. J. A. Long, J. C. Bernhard, C. Pigot, et al. “Partial Nephrectomy versus Ablative Therapy for the Treatment of Renal Tumors in an Imperative Setting.” World J Urol, vol. 35, 649-656, August, 2016.
     Google Scholar
  22. C. Floridi, I. De Bernardi, F. Fontana, et al. “Microwave Ablation of Renal Tumors: State of the Art and Development Trends” Radiol Med, vol. 119, 533-540, July, 2014.
     Google Scholar
  23. P. Prakash. “Theoretical Modeling for Hepatic Microwave Ablation” The Open Biomedical Engineering Journal, vol. 4, 27-38, 2010.
     Google Scholar
  24. G. L. DeNardo & S. J. DeNardo. “Turning the Heat on Cancer” Cancer Biotherapy & Radiopharmaceuticals, vol. 23(6), 671-679, 2008
     Google Scholar
  25. A. M. Lerardi, A. Mangano, C. Floridi, G. Dionigi, et al.. “A New System of Microwave Ablation at 2450 MHz: Preliminary Experience.” Updates Surg, vol. 67, 39-45, March, 2015
     Google Scholar
  26. S. C. Campbell, A. C. Novick, A. Belldegrun, M. L. Blute, et al. “Guideline for Management of the Clinical T1 Renal Mass.” J Urol, vol. 182, 1271-1279, 2009.
     Google Scholar
  27. G. Carrafiello, D. Lagana, M. Mangini, F. Fontana, et al. “Microwave Tumors Ablation: Principles, Clinical Applications and Preliminary Experiences.” International Journal of Surgery, vol. 6, S65-S69, December, 2008.
     Google Scholar
  28. T. Baere, & F. Deschamps. “New Tumors Ablation Techniques for Cancer Treatment (Microwave, Electroporation).” Diagnostic and Interventional Imaging, vol. 95, 677-682, 2014.
     Google Scholar
  29. G. Schaller, J. Erb, & R. Engelbrecht, R. “Field Simulation of Dipole Antennas for Interstitial Microwave Hyperthermia.” IEEE Transactions on Microwave Theory and Techniques, vol. 44(6), 887-895, 1996.
     Google Scholar
  30. C. L. Brace, D. W. Van der Weide, F. T. Lee, P. F. Laeseke, & L. Sampson. “Analysis and Experimental Validation of Triaxial Antenna for Microwave Ablation.” IEEE MTTS Int Microw Symp, vol. 3(6-11), 1437-1440, 2004.
     Google Scholar
  31. C. L. Brace. “Microwave Ablation Technology: What Every Use Should Know” Curr Probl Daign Radiol. Vol. 38(2), 61-67, September, 2010
     Google Scholar
  32. COMSOL (2014), “Microwave_cancer_therapy” COMSOL 5.0 (Build: 202).
     Google Scholar