• Omar Alvarez 
  • A. Barba 
  • R. Valdez 
  • R. González 
  • A. Covelo 
  • M. Hernández 
  • A. Rojas 

##plugins.themes.bootstrap3.article.main##

The objective of these two works is to show how a series of principles and concepts of Physics are applied (which are taught in the areas of Basic Sciences in Engineering careers), in various processes that are used to modify the surface of materials and thus provide them with improved properties particularly related to wear, fatigue and corrosion resistance, with the purpose that engineering students have greater evidence of practical applications and, therefore, of the importance of Physics for development of these technologies.
As an example, in this first article, the Thermal Spray processes are presented and it is shown how Physics concepts are applied and have a prominent role both in the design and in the construction of the equipment with which they are made, as well as in the own generation of surface treatments. This is intended to give a sample and evidence the usefulness of Physics in this type of process to both students and teachers.

Downloads

Download data is not yet available.

References

  1. Morales, J. Olaya J, Rojas H.. Una aproximación a la tecnología de proyección térmica. AVANCES. Investigación en Ingeniería 9, 2 (2012). p. 60-71.
     Google Scholar
  2. Pawlowski L. “The Science and Engineering of Thermal Spray Coatings”. John Wiley & Sons. Second Edition, Chichenster, England. ISBN: 978-0-471-49049-4. 2008
     Google Scholar
  3. Davis, J. R., (Ed.) et al, “Handbook of Thermal Spray Technology,” ASM International®, 1st Ed., Materials Park, OH, (2004).
     Google Scholar
  4. Rodríguez J. Martín A, Fernández R., Fernández J.. An experimental study of the wear performance of NiCrBSi thermal spray coatings. Wear 255 (2003) 950–955.
     Google Scholar
  5. Vaßen R, Kaßner R, Stuke A., Hauler F. Hathiramani, D. Stöver D. Advanced thermal spray technologies for applications in energy systems. Surface & Coatings Technology 202 (2008) 4432–4437
     Google Scholar
  6. Oksa M, Turunen E, Suhonen T, Varis T. Pekka S.. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications. Coatings 2011, 1, 17-52; doi:10.3390/coatings1010017
     Google Scholar
  7. Moridi A., Hassani S., Guagliano M. Dao M.. Cold spray coating: review of material systems and future perspectives. Surface Engineering 2014 36, 6. p. 369-395.
     Google Scholar
  8. Villa M, Dosta S., Fernández J., Guilemany J.. La proyección fría (CGs): Una alternativa a las tecnologías convencionales de deposición. Revista de Metalurgia, 48 Mayo-Junio, 175-191, 2012. ISSN: 0034-8570
     Google Scholar
  9. Cheng D. Trápaga G, Mckelliget, J. Lavernia E.. Mathematical Modeling of High Velocity Oxygen Fuel Thermal Spraying: An Overview. Key Engineering Materials 197:1-26 · January 2001
     Google Scholar
  10. Rojas H. Olaya J. González C.. Caracterización morfológica de los recubrimientos 140MCX-530AS y 140MCX-560AS usando la técnica de proyección térmica por arco eléctrico. Ingeniería Investigación y Tecnología, 17, 1 (2016): 1-13.
     Google Scholar
  11. Regina M. H. Pombo Rodriguez, Ramon S. C. Paredes, Schereiner H. Wido, Alfredo Calixto. Comparison of aluminum coatings deposited by flame spray and by electric arc spray. Surface & Coatings Technology, 202 (2007), 172–179.
     Google Scholar
  12. B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Zúñiga, P. Richer, E.J. Lavernia. Effect of particle size, morphology, and hardness on cold gas dynamic sprayed aluminum alloy coatings. Surface & Coatings Technology 201 (2006) 3422–3429.
     Google Scholar
  13. Archibald T. Tension and Potential from Ohm to Kirchhoff. Centaurus 31 (1988), 141 – 163.
     Google Scholar
  14. O. Darrigol, U. Frisch. From Newton’s mechanics to Euler’s equations. Physica D 237 (2008), 1855–1869.
     Google Scholar
  15. Gabbey A. Force and Inertia in Seventeenth.Century Dynamics. Studies in History and Philosophy of Science, 2 (1971). Doi: 10.1016/0039-3681(71)90037-9
     Google Scholar


Most read articles by the same author(s)