##plugins.themes.bootstrap3.article.main##

Based on results of different works carried out under the project of hydrogen and sustainable energies of the Department of Energy and the perspective shown by Bergues et al [6], concerning the presentation and interpretation of results obtained by Aleman [21], Sandoval and Yanez [10] and Morales and Argueta [22]; it is established a rigorous method for the analysis of the results obtained using as a model the Gompertz equation, and its first and second derivatives as indicators, that focuses on dark fermentation bio-hydrogen production, from the perspective of the conversion of the product –i.e., not of reagents–, for purposes of its maximization and operation control.

Downloads

Download data is not yet available.

References

  1. Argun H. and F. Kargi. (2011), Bio-hydrogen Production by Different Operational Modes of Dark and Photo-Fermentation: An Overview. International Journal of Hydrogen Energy. Vol. 36, Issue 13, pp. 7443-7459.
     Google Scholar
  2. Gompertz, Benjamin (1825). "On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Method of Determining the Value of Life Contingencies," Philosophical Transactions of the Royal Society, 513-585.
     Google Scholar
  3. Blanco Londono S.A., Rodríguez Chaparro T. (2012), Produccion de biohidrogeno a partir de residuos mediante fermentacion oscura: una revision critica. Ingeniare. Revista chilena de ingeniería, vol. 20 Nº 3, pp. 398-411.
     Google Scholar
  4. Trinidad Bello, A. (2014). Modelos de crecimiento en biología, su significado biológico y selección del modelo por su ajuste. Tesis para obtener el grado de maestro en ciencias matemáticas aplicadas e industriales, Universidad Autónoma Metropolitana, Unidad Iztapalapa.
     Google Scholar
  5. Barrera-Quintero, Vladimir (2016). Modeling of the production of bio-hydrogen by means of the Gompertz equation and analysis of its parameters. Advisers: Juan Bory Reyes, Jose Angel Davila Gomez. Chemical Engineering Integration Project Report; Universidad Autonoma Metropolitana, Unidad Azcapotzalco. Mexico.
     Google Scholar
  6. Bergues-Cabrales L. E., Ramirez-Aguilera A., Camue-Ciria H. M., Bory-Reyes J, O’Farril-Mateus M. A., Placeres-Jimenez R., Verdecia-Jarque M., Suarez-Palencia F, Gonzalez-Avila M. (2008). Mathematical modeling of tumor growth in mice following low-level direct electric current. Mathematics and Computers in Simulation Vol. 78, pp.112–120.
     Google Scholar
  7. Chen, W. M.; Z. J. Tseng, K. S. Lee and J.S. Chang (2005). "Fermentative Hydrogen Production with Clostridium Butyricum CGS5 Isolated From Anaerobic Sewage Sludge". International Journal of Hydrogen Energy. Vol. 30, Issue 10, pp. 1063-1070.
     Google Scholar
  8. Chen C. Yen; Hoe Yang M., Ling Yeha K., Hung Liua C., Shu Changa J. (2008), Biohydrogen production using sequential two-stage dark and photo fermentation processes, International Journal of Hydrogen Energy, 4755 – 4762.
     Google Scholar
  9. Gadhamshetty V., Arudchelvam Y., Nirmalakhandan. (2009), N. Modeling dark fermentation for biohydrogen production: ADM1-based model vs. Gompertz model, International Journal of Hydrogen Energy, 479 – 490.
     Google Scholar
  10. Sandoval-Santa-Ana M., Yanez-Reyes J.J. (2014), Biohydrogen production kinetics by fermentation of molasses in a batch reactor. Advisers: Ma. Elena Hernandez Rojas y Jose Angel Davila Gomez. Chemical Engineering Project Report, Universidad Autonoma Metropolitana, Unidad Azcapotzalco. Mexico
     Google Scholar
  11. Charles P. Winsor. (1932). The Gompertz curve as a growth curve. Proceedings of the National Academy of Sciences. Volume 18: 1-8.
     Google Scholar
  12. Lay JJ. (2001) Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnology Bioengineering 74: 280–7.
     Google Scholar
  13. Wen-Hsing Chena, Shen-Yi Chenb, Samir Kumar Khanala, Shihwu Sunga (2006); Kinetic study of biological hydrogen production by anaerobic fermentation International Journal of Hydrogen Energy 31: 2170 – 2178.
     Google Scholar
  14. Hernández Rojas M. E., Vazquez Huerta G., Davila Gomez J. A. (2012), Fermentacion anaerobia para la produccion de bio-hidrogeno en un reactor UASB mediante la ruta del etanol (2012). Revista Cubana de Quimica. Vol. XXIV, No 3, septiembre-diciembre.M. H. Hwang, N. J. Jang, S. H. Hyun, and I. S. Kim, (2004). “Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH”. Journal of Biotechnology, Vol. 111, Issue3, pp. 297-309.
     Google Scholar
  15. Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL. (2007). Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress IJHE. 32. 32:172-184.
     Google Scholar
  16. M. H. Hwang, N. J. Jang, S. H. Hyun, and I. S. Kim, (2004). “Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH”. Journal of Biotechnology, Vol. 111, Issue3, pp. 297-309.
     Google Scholar
  17. Nanqi Rena, Jianzheng Lia, Baikun Lib,YongWanga, Shirui Liua. (2006). Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. International Journal of Hydrogen Energy 31: 2147 – 2157.
     Google Scholar
  18. P. Sinha and A. Pandey. (2011), “An Evaluative Report and Challenges for Fermentative Biohydrogen Production”. International Journal of Hydrogen Energy. Vol. 36, Issue 13, pp. 7460-7478.
     Google Scholar
  19. Sandoval-Santa-Ana M., Yanez-Reyes J.J. (2013). Calculation of Gompertz equation’s parameters for the bio-hydrogen production with different cultures through various numerical methods. Advisers: Jose Angel Davila Gomez y Ma. Elena Hernandez Rojas. Chemical Engineering Project Advance Report. Universidad Autonoma Metropolitana, Unidad Azcapotzalco. Mexico.
     Google Scholar
  20. Dartmouth College, US (2017), as https://math.dartmouth.edu/opencalc2/cole/lecture8.pdf .
     Google Scholar
  21. Aleman-Ruiz, Alfonso, (2013). Bio-production of hydrogen from organic waste. Advisers: Ma. Elena Hernandez Rojas, Ma. del Carmen Fajardo Ortiz y Jose Angel Davila Gomez. Environmental Engineering Project Report. Universidad Autonoma Metropolitana, Unidad Azcapotzalco. Mexico
     Google Scholar
  22. Morales Hernández S.A., Rizo Acosta P., Hernández Rojas M.E., Davila Gómez J.A. (2015), Produccion de biohidrogeno en un reactor continuo UASB, Rev. Cubana Quím. Vol. 27, no. 1, enero-abril, 2015, págs. 65-78.
     Google Scholar