##plugins.themes.bootstrap3.article.main##

The thermodynamic study of combined cooling, heating and power generation system with the recovery of heat source from the condenser of 1MW thermal power plant. The R-134a working fluid based Organic Rankine Cycle (ORC) is introduced in the proposed thermodynamic analysis and the provision of parabolic trough collector is recommended for solar heating purpose. The analysis of the system shows thermal efficiency and multiple effects like Heating- Cooling and Power through heat recovery of thermal power plant. This analysis also express the resulting process heat obtained and the cooling effect of solar integrated as well as non-solar integrated system. The results conclude that the thermal efficiency as well as heating-power and cooling effects increases by 30-40% in the case of solar integrated as compare to without solar system.

Downloads

Download data is not yet available.

References

  1. http://www.eia.gov/consumption/mahufacturing/index.cfm.(Cited by March 2016)
     Google Scholar
  2. Vélez, F., Segovia, J., Martín, M.C., Antolín, G., Chejne, F. and Quijano, A., "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation". Renewable & Sustainable Energy Reviews, vol. 16, pp. 4175–4189, 2012.
     Google Scholar
  3. Vélez, F., Chejne, F., Antolín, G. and Quijano, "A., Theoretical analysis of a transcritical power cycle for power generation from waste energy at low temperature heat source".Energy Conversion and Management, vol. 60, pp. 188–195, 2012.
     Google Scholar
  4. Saleh, B., Koglbauer, G., Wendland, M. and Fischer, J., "Working fluids for low temperature organic Rankine cycles".Energy, Vol. 32, pp. 1210– 1221, 2007.
     Google Scholar
  5. Quolin, S., Declaye, S., Tchange, B.F. and Lemort, V., "Thermo- Economic optimization of waste heat recovery organic Rankine cycles". Applied Thermal Engineering, vol. 31, pp. 2885-2893, 2011.
     Google Scholar
  6. Tchange, B.F., Papadakis, G., Lambrinos, G. and Frangoudakis, A., "Fluid selection for a low-temperature solar organic Rankine cycle". Applied Thermal Engineering, vol. 29, pp. 2468–2476, 2009.
     Google Scholar
  7. Quolin, S., Aumann, R., Grill, A., Schuster, A., Lemort, V. and Spliethoff, H., "Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles". Applied Energy, vol. 88, pp. 2183– 2190, 2011.
     Google Scholar
  8. Hung, T.C., Shal, T.Y. and Wang, S.K.,"A review of organic Rankine cycles (ORC`s) for the recovery of low-grade waste heat". Energy, vol. 22 (7), pp. 661-667, 1997.
     Google Scholar
  9. Chen, H., Goswami, Y. and Stefanakos, E., "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat". Renewable & Sustainable Energy Reviews, vol. 14, pp.3059–3067, 2010.
     Google Scholar
  10. Vélez, F., Segovia, J., Martín, M.C., Antolín, G., Chejne, F. and Quijano, A., "Comparative study of working fluids for a Rankine cycle operating at low temperature". Fuel Processing Technology, vol. 103, pp.71–77, 2012.
     Google Scholar
  11. U.S. Environmental Protection Agency. Class I Ozone Depleting Substances. [Online]. [date of reference March 11th of 2013] Available at: www.epa.gov/ozone/science/ods/classone.html.
     Google Scholar
  12. Roy, J.P., Mishra, M.K. and Misra, A., "Parametric optimization and performance analysis of a waste heat recovery system using organic Rankine cycle".Energy, vol. 35, pp. 5049-5062, 2010.
     Google Scholar
  13. Roy, J.P., Mishra, M.K. and Misra, A., "Parametric optimization and performance analysis of a regenerative organic Rankine cycle using low-grade waste heat for power generation". International Journal of Green Energy, vol. 8 (2), pp. 173–196, 2011.
     Google Scholar
  14. Manolakos, D., Papadakis, G., Mohamed, E., Kyritsis, S. and Bouzianas, K., "Design of an autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination". Desalination, vol. 183, pp. 73–80, 2005.
     Google Scholar
  15. Manolakos, D., Papadakis, G., Kyritsis, S. and Bouzianas, K., "Experimental evaluation of an autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination". Desalination, vol. 203, pp. 366–374, 2007.
     Google Scholar
  16. Manolakos, D., Kosmadakis, G., Kyritsis, S. and Papadakis, G., "On site experimental evaluation of a low-temperature solar organic Rankine cycle system for RO desalination". Solar Energy, vol. 83, pp. 646–656, 2009.
     Google Scholar
  17. Manolakos, D., Kosmadakis, G., Kyritsis, S. and Papadakis, G., "Identification of behaviour and evaluation of performance of small scale, low-temperature organic Rankine cycle system coupled with a RO desalination unit". Energy, vol. 34, pp. 767–774, 2009.
     Google Scholar
  18. Bruno, J.C., López-Villada, J., Letelier, E., Romera, S. and Coronas, A.,"Modelling and optimisation of solar organic Rankine cycle engines for reverse osmosis desalination". Applied Thermal Engineering, vol. 28, pp. 2212–2226, 2008.
     Google Scholar
  19. Delgado-Torres, A. and García-Rodríguez, L.,"Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC)".Energy Conversion and Management, vol. 51, pp. 2846–2856, 2010.
     Google Scholar
  20. Thanche, B.F., Lambrinos, G., Frangoudakis, A. and Papadakis, G.,"Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system". Applied Energy, vol. 87, pp. 1295–1306, 2010.
     Google Scholar
  21. Schuster, A. and Karl, J.," Simulation of an innovative stand-alone solar desalination system using an organic Rankine cycle". Int. J. of Thermodynamics, vol. 10(4), pp. 155-163, 2007.
     Google Scholar
  22. Karellas, S., Terzis, K. and Manolakos, D., "Investigation of an autonomous hybrid solar thermal ORC-PV RO desalination system. The Chalki island case." Renewable Energy, vol. 36, pp. 583-590, 2011.
     Google Scholar
  23. Kosmadakis, G., Manolakos, D. and Papakakis, G., "Parametric theoretical study of a two-stage solar organic Rankine cycle for RO desalination". Renewable Energy, 35, pp. 989–996, 2010.
     Google Scholar
  24. Franco, A. and Villani, M., "Optimal design of binary cycle power plants for water-dominated, medium-temperature geothermal fields". Geothermics, vol. 38, pp. 379–391, 2009.
     Google Scholar
  25. Aneke, M., Agnew, B. and Underwood, C., "Performance analysis of the Chena binary geothermal power plant".Applied Thermal Engineering, vol. 31, pp. 1825-1832, 2011.
     Google Scholar
  26. Astolfi, M., Xodo, L., Romano, M. and Macchi, E., "Technical and economical analysis of a solar–geothermal hybrid plant based on an organic Rankine cycle."Geothermics, vol. 40, pp. 58–68, 2011.
     Google Scholar
  27. Vaja, I. and Gambarotta, A., "Internal combustion engine (ICE) bottoming with organic Rankine cycles (ORCs)". Energy, vol. 34, pp. 767–774, 2009.
     Google Scholar
  28. Schuster, A., Karellas, S., Kakaras, E. and Spliethoff, H., "Energetic and economic investigation of organic Rankine cycle applications". Applied Thermal Engineering, vol. 29, pp. 1809–1817, 2009.
     Google Scholar
  29. Chen, H., Goswami, Y., Rahman, M. and Stefanakos, E., "A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power". Energy, vol. 36, pp. 549-555, 2011.
     Google Scholar
  30. Mikielewicz, D. and Mikielewicz, J., "A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP".Applied Thermal Engineering, vol. 30, pp. 2357-2362, 2010.
     Google Scholar
  31. Lakew, A. and Bolland, O., "Working fluids for low temperature heat source". Applied Thermal Engineering, vol. 30, pp. 1262–1268, 2010.
     Google Scholar
  32. Lemmon, E.W., Huber, M.L. and Mclinden, M.O., Reference fluid thermodynamic and transport properties (REFPROP). NIST Standard Reference Database, 23, Version 8.0; 2007.
     Google Scholar
  33. FredyVélez, Farid Chejne & Ana Quijano “Thermodynamic analysis of R134a in an Organic Rankine Cycle for power generation from low temperature sources” Dyna, ISSN: 0012-7353,vol. 81, núm. 185, junio, 2014, pp. 153-159, Universidad Nacional de Colombia Medellín, Colombia.
     Google Scholar