##plugins.themes.bootstrap3.article.main##

In this paper, we discuss an improved demodulation scheme using the Fractional Fourier Transform (FrFT) for a modulation scheme employing chirp rate shift keying (CrSK). CrSK in conjunction with the FrFT enable very high order, e.g. more than 32-ary modulation schemes to be achievable with good bit error rate (BER) performance, even in the absence of coding, thereby overcoming limitations of traditional schemes including phase shift keying (PSK) or QAM (quadrature amplitude modulation). By using an FrFT-based demodulator, we expand our demodulation degrees of freedom from a single (e.g. frequency) axis to an entire time-frequency domain, called the Wigner Distribution (WD). We show how the proposed demodulation scheme using the FrFT improves over past approaches by more than 7 dB, enabling us to achieve close to 4-ary performance with a 32-ary modulation scheme. This enables future systems to operate at 5 bits/s/Hz bandwidth efficiency, enhancing bandwidth utilization for future generation, high data rate, applications, such as internet.

Downloads

Download data is not yet available.

References

  1. Bultheel, A., and Sulbaran, H.E.M., “Computation of the Fractional Fourier Transform”, Int. Journal of Applied and Computational Harmonic Analysis 16 (2006), pp. 182-202.
     Google Scholar
  2. Candan, C., Kutay, M.A., and Ozaktas, H.M., “The Discrete Fractional Fourier Transform”, IEEE Trans. on Sig. Proc., Vol. 48, pp. 1329-1337, May 2000.
     Google Scholar
  3. Candan, C., Kutay, M.A., and Ozaktas, H.M., “The Discrete Fractional Fourier Transform”, Proc Int. Conf. on Acoustics, Speech, and Sig. Proc. (ICASSP), Phoenix, AZ, pp. 1713-1716, Mar. 15-19, 1999.
     Google Scholar
  4. Kutay, M.A., Ozaktas, H.M., Arikan, O., and Onural, L., “Optimal Filtering in Fractional Fourier Domains”, IEEE Trans. on Sig. Proc., Vol. 45, No. 5, May 1997.
     Google Scholar
  5. Kutay, M.A., Ozaktas, H.M., Onural, L., and Arikan, O. “Optimal Filtering in Fractional Fourier Domains”, Proc. IEEE Int. Conf. on Acoustics, Speech, and Sig. Proc. (ICASSP), Vol. 2, pp. 937-940, 1995.
     Google Scholar
  6. O’Toole, J.M., Mesbah, M., and Boashash, B., “Discrete Time and Frequency Wigner-Ville Distribution: Properties and Implementation”, Proc. Int. Symp. on Digital Sig. Proc. and Comm. Systems, Noosa Heads, Australia, Dec. 19-21, 2005.
     Google Scholar
  7. Ozaktas, H.M., Zalevsky, Z., and Kutay, M.A., “The Fractional Fourier Transform with Applications in Optics and Signal Processing”, John Wiley and Sons: West Sussex, England, 2001.
     Google Scholar
  8. Proakis, J.G., “Digital Communciations”, McGraw-Hill Education, 5th edition, 2007.
     Google Scholar
  9. Sud, S., “A Simple Method for Separating Weak and Strong Moving Targets in Clutter for a Radar System Using the Fractional Fourier Transform”, Signal Processing: An Int. Journal (SPIJ), Vol. 10, No. 2, pp. 31-40, Oct. 2016.
     Google Scholar
  10. Sud, S., “Spiking Deconvolution for Seismic Waves Using the Fractional Fourier Transform”, Proc. IEEE SoutheastCon, Concord, NC, Mar. 30-Apr. 2, 2017.
     Google Scholar