##plugins.themes.bootstrap3.article.main##

In the present investigation the effect of the urban environment of the city of Xalapa, Ver., México in the depth carbonation in Sustainable Concrete made with Agro-Industrial and Industrial Waste Materials like Sugar Cane Bagasse Ash (SCBA) and Silica Fume (SF), was evaluated. The Sustainable Concretes and the Conventional Concrete (Concrete of reference) were designed for a relation water/cement= 0.65 according to the indicated for the ACI 211.1. The Conventional Concrete was elaborated with 100% of Portland cement, and the Sustainable Concretes with partial substitution of Portland cement for the waste of SCBA and SF in percentages of 10, 20, 30, 40, and 50%. The results through the application of phenolphthalein, indicate that the Carbonation depth is proportional to the increase of the substitution of Portland Cement for agro-industrial and industrial waste. The sustainable concrete with 50% of substitution of SCBA-SF presents the worst performance, with a carbonation depth of 1.48 cm, which represents an increment of more of 350% than the conventional concrete at being exposed for one year to the present environment of study.

Downloads

Download data is not yet available.

References

  1. REFERENCES
     Google Scholar
  2. Rabi M. Bond prediction of stainless-steel reinforcement using artificial neural networks. Proceedings of the ICE - Construction Materials. 2023;176(2):1-11. DOI: 10.1680/jcoma.22.00098.
    DOI  |   Google Scholar
  3. Baltazar-Zamora MA, Márquez-Montero S, Landa-Ruiz L, Croche R, López-Yza O. Effect of the type of curing on the corrosion behavior of concrete exposed to the urban and marine environment. European Journal of Engineering Research and Science, 2020;5(1):91-95. DOI: 10.24018/ejeng.2020.5.1.1716.
    DOI  |   Google Scholar
  4. Zhang C, Zhu M, Xu K, Yuan Y, Guo S, Wei G. Effect of HSO3− and alternating current on corrosion behaviour and mechanism of CoCrFeNi HEA in a simulated marine environment. Corrosion Engineering, Science and Technology,2023;58:2190443. DOI: 10.1080/1478422X.2023.2190443.
    DOI  |   Google Scholar
  5. Volpi-León V, López-Léon LD, Hernández-Ávila J, Baltazar-Zamora MA, Olguín-Coca FJ, López-León AL. Corrosion study in reinforced concrete made with mine waste as a mineral additive. International Journal of Electrochemical Science, 2017;12(1):22-31. DOI: 10.20964/2017.01.08.
    DOI  |   Google Scholar
  6. Zhang Q, Li H, Feng H, Jiang T. Effect of Bagasse Ash Admixture on Corrosion Behavior of Low Carbon Steel Reinforced Concrete in Marine Environment. International Journal of Electrochemical Science, 2020;15(7): 6135–6142. DOI: 10.20964/2020.07.65.
    DOI  |   Google Scholar
  7. Santiago-Hurtado G, Baltazar-Zamora MA, Galván-Martínez R, López LLD, Zapata GF, Zambrano P, Gaona-Tiburcio C, et al. Electrochemical Evaluation of Reinforcement Concrete Exposed to Soil Type SP Contaminated with Sulphates. International Journal of Electrochemical Science, 2016;11(6):4850-4864. DOI: 10.20964/2016.06.31.
    DOI  |   Google Scholar
  8. Raczkiewicz W. Use of polypropylene fibres to increase the resistance of reinforcement to chloride corrosion in concretes. Science and Engineering of Composite Materials, 2021; 28(1): 555–567. DOI: 10.1515/secm-2021-0053.
    DOI  |   Google Scholar
  9. Landa-Ruiz L, Ariza-Figueroa H, Santiago-Hurtado G, Moreno-Landeros V, López Meraz R, Villegas-Apaez R, Márquez-Montero S, et al. Evaluation of the Behavior of The Physical and Mechanical Properties of Green Concrete Exposed to Magnesium Sulfate. European Journal of Engineering Research and Science, 2020;5(11):1353-1356. DOI: 10.24018/ejeng.2020.5.11.2241.
    DOI  |   Google Scholar
  10. Gaona Tiburcio C, Samaniego-Gámez O, Jáquez-Muñoz JM, Baltazar-Zamora MA, Landa-Ruiz L, Lira-Martínez A, Flores-De los Rios JP, et al. Frequency-Time Domain Analysis of Electrochemical Noise of Passivated AM350 Stainless Steel for Aeronautical Applications. International Journal of Electrochemical Science, 2022;17(9):220950. DOI: 10.20964/2022.09.49.
    DOI  |   Google Scholar
  11. Baltazar-Zamora MA, Mendoza-Rangel JM, Croche R, Gaona-Tiburcio C, Hernández C, López L, Olguín F, et al. Corrosion Behavior of Galvanized Steel Embedded in Concrete Exposed to Soil Type MH Contaminated with Chlorides. Frontiers in Materials, 2019;6:1-12. DOI: 10.3389/fmats.2019.00257.
    DOI  |   Google Scholar
  12. Jáquez-Muñoz JM, Gaona-Tiburcio C, Méndez-Ramírez CT, Baltazar-Zamora MA, Estupinán-López F, Bautista-Margulis RG,Cuevas-Rodríguez J, Flores-De los RiosJP, Almeraya-Calderón FM. Corrosion of Titanium Alloys Anodized Using Electrochemical Techniques.Metals, 2023;13(3):476. DOI: 10.3390/met13030476.
    DOI  |   Google Scholar
  13. Santiago-Hurtado G, Baltazar-Zamora MA, Olguin-Coca J, López L LD, Galván-Martínez R, Ríos-Juárez A, Gaona-Tiburcio C, et al. Electrochemical Evaluation of a Stainless Steel as Reinforcement in Sustainable Concrete Exposed to Chlorides. International Journal of Electrochemical Science, 2016;11(4):2994-3006. DOI: 10.20964/110402994.
    DOI  |   Google Scholar
  14. Gaona-Tiburcio C, Montoya-Rangel M, Cabral-Miramontes JA, Estupiñan-López F, Zambrano-Robledo P, Orozco Cruz R , Chacón-Nava JG, etal. Corrosion Resistance of Multilayer Coatings Deposited by PVD on Inconel 718 Using Electrochemical Impedance Spectroscopy Technique. Coatings, 2020;10:521. DOI. 10.3390/coatings10060521.
    DOI  |   Google Scholar
  15. Baltazar-Zamora MA, Santiago-Hurtado G, Moreno LVM, Croche BR, de la Garza M, Estupiñan LF, Zambrano RP, et al. Electrochemical Behaviour of Galvanized Steel Embedded in Concrete Exposed to Sand Contaminated with NaCl. International Journal of Electrochemical Science, 2016;11(12):10306-10319. DOI: 10.20964/2016.12.28.
    DOI  |   Google Scholar
  16. Sakai T, Inukai S, Inagaki M, Nakano M. Improvement in seismic resistance using replacement/counterweight fill method for existing high embankments on inclined ground constructed with various embankment materials. Soils and Foundations,2023;63(2):1-14. DOI: 10.1016/j.sandf.2023.101284.
    DOI  |   Google Scholar
  17. Baltazar-Zamora MA, Ariza-Figueroa H, Landa-Ruiz L, Croche R. Electrochemical Evaluation of AISI 304 SS and Galvanized Steel in Ternary Ecological Concrete based on Sugar Cane Bagasse Ash and Silica Fume (SCBA-SF) exposed to Na2SO4. European Journal of Engineering Research and Science, 2020;5(3):353-357. DOI: 10.24018/ejeng.2020.5.3.1852.
    DOI  |   Google Scholar
  18. Wang D, Zhao X, Meng Y, Chen Z. Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack. Construction and Building Materials, 2017;147: 398–406. DOI: 10.1016/j.conbuildmat.2017.04.172.
    DOI  |   Google Scholar
  19. Zapata-Padilla JR, Juárez-Alvarado CA, Durán-Herrera A, Baltazar-Zamora MA, Terán-Torres BT, Vázquez-Leal FR, Mendoza-Rangel JM. Portland Cement-Based Grouts Enhanced with Basalt Fibers for Post-Tensioned Concrete Duct Filling. Materials,2023;16(7):2842.DOI:10.3390/ma16072842
    DOI  |   Google Scholar
  20. Baltazar-Zamora MA, Landa-Ruiz L, Rivera Y, Croche R. Electrochemical Evaluation of Galvanized Steel and AISI 1018 as Reinforcement in a Soil Type MH. European Journal of Engineering Research and Science. 2020;5(3):259-263. DOI: 10.24018/ejeng.2020.5.3.1789.
    DOI  |   Google Scholar
  21. Farhangi V, Karakouzian M. Effect of fiber reinforced polymer tubes filled with recycled materials and concrete on structural capacity of pile foundations. Applied Sciences, 2020;10:1554. DOI: 10.3390/app10051554.
    DOI  |   Google Scholar
  22. Castaneda-Robles IE, López-León LD, Moreno-Landeros VM, Baltazar-Zamora MB, Olguín-Coca FJ, Lizárraga-Mendiola LG. Electrochemical behavior of carbon steel under a continuous kerosene flow in two different kind of sections. International Journal of Electrochemical Science,2018;13(9):9039–9050. DOI: 10.20964/2018.09.36.
    DOI  |   Google Scholar
  23. Cosoli G, Mobili A, Tittarelli F, Revel GM, Chiariotti P. Electrical Resistivity and Electrical Impedance Measurement in Mortar and Concrete Elements: A Systematic Review. Applied Sciences. 2020;10: 9152. DOI:doi.org/10.3390/app10249152.
    DOI  |   Google Scholar
  24. Baltazar-Zamora MA, Bastidas DM, Santiago-Hurtado G, Mendoza-Rangel JM, Gaona-Tiburcio C, Bastidas JM, Almeraya-Calderón F. Effect of Silica Fume and Fly Ash Admixtures on the Corrosion Behavior of AISI 304 Embedded in Concrete Exposed in 3.5% NaCl Solution. Materials (Basel), 2019;12(23):1-13. DOI: 10.3390/ma12234007.
    DOI  |   Google Scholar
  25. Figueira RB. Electrochemical sensors for monitoring the corrosion conditions of reinforced concrete structures: A review. Applied Sciences, 2017;7:1157. DOI: 10.3390/app7111157.
    DOI  |   Google Scholar
  26. Landa-Ruiz L, Landa-Gómez A, Mendoza-Rangel JM, Landa-Sánchez A, Ariza-Figueroa H, Méndez-Ramírez CT, Santiago-Hurtado G, et al.Physical, Mechanical and Durability Properties of Ecofriendly Ternary Concrete Made with Sugar Cane Bagasse Ash and Silica Fume. Crystals, 2021;11:1012. DOI: 10.3390/cryst11091012.
    DOI  |   Google Scholar
  27. Raczkiewicz W, Wójcicki A. Temperature impact on the assessment of reinforcement corrosion risk in concrete by galvanostatic pulse method. Applied Sciences, 2020;10(3):1-13. DOI:10.3390/app10031089.
    DOI  |   Google Scholar
  28. Barrios Durstewitz CP, Baldenebro López FJ, Núñez Jaquez RE, Fajardo G, Almeraya F, Maldonado-Bandala E, Baltazar-Zamora M, et al. Cement Based Anode in the Electrochemical Realkalisation of Carbonated Concrete. International Journal of Electrochemical Science, 2012;7(4):3178–3190.
     Google Scholar
  29. Landa-Sánchez A, Bosch J, Baltazar-Zamora MA, Croche R, Landa-Ruiz L, Santiago-Hurtado G, Moreno-Landeros VM, et al. Corrosion Behavior of Steel-Reinforced Green Concrete Containing Recycled Coarse Aggregate Additions in Sulfate Media. Materials (Basel), 2020;13(19):1-22. DOI: 10.3390/ma13194345.
    DOI  |   Google Scholar
  30. Baltazar-Zamora MA, Santiago-Hurtado G, Gaona-Tiburcio C, Maldonado-Bandala EE, Barrios-Durstewist CP, Núñez-J RE, Pérez-López T, et al. Evaluation of the corrosion at early age in reinforced concrete exposed to sulfates. International Journal of Electrochemical Science, 2012;7(1):588-600.
     Google Scholar
  31. Rabi M, Shamass R, Cashell KA. Structural performance of stainless steel reinforced concrete members: A review. Construction and Building Materials, 2022;325:126673. DOI: 10.1016/j.conbuildmat.2022.126673.
    DOI  |   Google Scholar
  32. Baltazar-García BP, Baltazar-Zamora DF, Landa-Ruiz L, Méndez CT, Solorzano R, Estupiñan López FH, Croche R, et al.Eco-Friendly Concrete Made with System CPC-SCBA-SF As a Protector Against Sulfate Corrosion of Reinforcing Steel AISI 1018.European Journal of Engineering and Technology Research, 2022;7(6):14-20. DOI: 10.24018/ejeng.2022.7.6.2911.
    DOI  |   Google Scholar
  33. Xiao T, Du C, Liu Y. Electrochemical Evaluation on Corrosion Behavior of SAF 2507 Duplex Stainless Steels in Blended Concrete with Metakaolin and ultrafine Slag Admixtures. International Journal of Electrochemical Science, 2021;16:210642. DOI: 10.20964/2021.06.15.
    DOI  |   Google Scholar
  34. Landa-Ruiz L, Croche R, Santiago-Hurtado G, Moreno-Landeros V, Cuevas J, Méndez CT, Jara-Díaz M, et al. Evaluation of the Influence of the Level of Corrosion of the Reinforcing Steel in the Moment-Curvature Diagrams of Rectangular Concrete Columns. European Journal of Engineering and Technology Research, 2021;6(3):139-145. DOI: 10.24018/ejeng.2021.6.3.2423.
    DOI  |   Google Scholar
  35. Raczkiewicz W, Bacharz M, Bacharz K, Teodorczyk M. Reinforcement Corrosion Testing in Concrete and Fiber Reinforced Concrete Specimens Exposed to Aggressive External Factors. Materials, 2023;16(3):1174. DOI: 10.3390/ma16031174.
    DOI  |   Google Scholar
  36. Baltazar-Zamora MA, Maldonado-Bandala E, Loya Tello MU, Santiago-Hurtado G, Olguín Coca FJ, Ortiz-Cedano A, Barrios DCP, et al.Efficiency of Galvanized Steel Embedded in Concrete Previously Contaminated with 2, 3 and 4% of NaCl. International Journal of Electrochemical Science, 2012;7(4):2997-3007.
     Google Scholar
  37. Baltazar-García BP, Baltazar-Zamora DF, Landa-Ruiz L, Méndez CT, Santiago-Hurtado G, Moreno-Landeros V, Croche R, Baltazar-Zamora MA. Electrochemical Corrosion in Bars of AISI 304 Embedded in Concrete Immersed in Marine-Sulfated Environment. European Journal of Engineering and Technology Research,2023;8(1):13-18. DOI: 10.24018/ejeng.2023.8.1.2942.
    DOI  |   Google Scholar
  38. Burtuujin G, Son D, Jang I, Yi C, Lee H. Corrosion behavior of pre-rusted rebars in cement mortar exposed to harsh environment. Applied Sciences, 2020;10:8705. DOI: 10.3390/app10238705.
    DOI  |   Google Scholar
  39. Landa-Ruiz L, Baltazar-Zamora MB, Bosch J, Ress J, Santiago-Hurtado G, Moreno-Landeros VM, Márquez-Montero S, et al. Electrochemical Corrosion of Galvanized Steel in Binary Sustainable Concrete Made with Sugar Cane Bagasse Ash (SCBA) and Silica Fume (SF) Exposed to Sulfates. Applied Sciences, 2021;11:2133. DOI: 10.3390/app11052133.
    DOI  |   Google Scholar
  40. Baltazar-Zamora MA, Landa-Sánchez A, Landa-Ruiz L, Ariza-Figueroa H, Gallego-Quintana P, Ramírez-García A, Croche R, et al.Corrosion of AISI 316 Stainless Steel Embedded in Sustainable Concrete made with Sugar Cane Bagasse Ash (SCBA) Exposed to Marine Environment. European Journal of Engineering Research and Science,2020;5(2):127-131. DOI: 10.24018/ejers.2020.5.2.1751.
    DOI  |   Google Scholar
  41. Xu P, Jiang L, Guo M, Zha J, Chen L, Chen C, Xu N. Influence of sulfate salt type on passive film of steel in simulated concrete pore solution. Construction and Building Materials, 2019;223:352–359. DOI: j.conbuildmat.2019.06.209.
    DOI  |   Google Scholar
  42. Baltazar-Zamora MA, Landa-Ruiz L, Landa-Gómez AE, Santiago-Hurtado G, Moreno-Landeros V, Méndez Ramírez CT, Fernandez Rosales V, et al. Corrosion of AISI 316 Stainless Steel Embedded in Green Concrete with Low Volume of Sugar Cane Bagasse Ash and Silica Fume exposed in Seawater. European Journal of Engineering and Technology Research, 2022;7(1):57-62. DOI: 10.24018/ejeng.2022.7.1.2716.
    DOI  |   Google Scholar
  43. Ewa DE, Egbe EA, Ukpata JO, Etika A. Sustainable subgrade improvement using limestone dust and sugarcane bagasse ash. Sustainable Technology and Entrepreneurship, 2022;2:1-8. DOI:10.1016/j.stae.2022.100028.
    DOI  |   Google Scholar
  44. Landa-Ruiz L, Márquez-Montero S, Santiago-Hurtado G, Moreno-Landeros V, Mendoza-Rangel JM, Baltazar-Zamora MA. Effect of the Addition of Sugar Cane Bagasse Ash on the Compaction Properties of a Granular Material Type Hydraulic Base. European Journal of Engineering and Technology Research, 2021;6(1):76–79. DOI:10.24018/ejeng.2021.6.1.2335.
    DOI  |   Google Scholar
  45. Nikhade H, Birali RRL, Ansari K, Khan MA, Najm HM, Anas SM, Mursaleen M, et al. Behavior of geomaterial composite using sugar cane bagasse ash under compressive and flexural loading. Frontiers in Materials, 2023;10:1-17. DOI: 10.3389/fmats.2023.1108717.
    DOI  |   Google Scholar
  46. Ojeda-Farías O, Mendoza-Rangel JM, Baltazar-Zamora MA. Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. Revista ALCONPAT, 2018;8(2):194-208. DOI: 10.21041/ra.v8i2.282.
    DOI  |   Google Scholar
  47. Ariza-Figueroa HA, Bosch J, Baltazar-Zamora MA, Croche R, Santiago-Hurtado G, Landa-Ruiz L, Mendoza-Rangel JM, Bastidas JM, etal. Corrosion Behavior of AISI 304 Stainless Steel Reinforcements in SCBA-SF Ternary Ecological Concrete Exposed to MgSO4. Materials (Basel), 2020;13(10):1-16. DOI: 10.3390/ma13102412.
    DOI  |   Google Scholar
  48. ACI. Provision of mixtures, normal concrete, heavy and massive ACI 211.1, p. 29. Ed. IMCYC, Mexico (2004).
     Google Scholar
  49. ASTM C29 / C29M–07–Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate; ASTM International, West Conshohocken, PA, 2007, www.astm.org.
     Google Scholar
  50. ASTM C127–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate; ASTM International, West Conshohocken, PA, 2015, www.astm.org.
     Google Scholar
  51. ASTM C128–15–Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate; ASTM International, West Conshohocken, PA, 2015, www.astm.org.
     Google Scholar
  52. ASTM C136 / C136M –14–Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates; ASTM International, West Conshohocken, PA, 2014, www.astm.org.
     Google Scholar
  53. NMX-C-156-ONNCCE-2010: Determinación del revenimiento en el concreto fresco. ONNCCE S.C., México; 2010.
     Google Scholar
  54. ASTM C 1064/C1064M - 08 Standard, (2008). Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete. ASTM International, West Conshohocken, PA, 2008, www.astm.org.
     Google Scholar
  55. NMX-C-162-ONNCCE-2014: Determinación de la masa unitaria, cálculo del rendimiento y contenido de aire del concreto fresco por el método gravimétrico., ONNCCE S.C., México; 2014.
     Google Scholar
  56. NMX-C-083-ONNCCE-2014: Determinación de la resistencia a la compresión de especímenes – Método de prueba, ONNCCE S.C., México; 2014.
     Google Scholar
  57. Baltazar-García BP, Baltazar-Zamora DF, Landa-Ruiz L, Méndez CT, Solorzano R, Reyes J, Márquez S, et al. Corrosion Behavior of AISI 1018 Reinforcing Steel in Sustainable Concrete made with Sugar Cane Bagasse Ash and Recycled Aggregates Exposed in Seawater. European Journal of Engineering and Technology Research, 2022;7(6):101-107. DOI: 10.24018/ejeng.2022.7.6.2930.
    DOI  |   Google Scholar
  58. Troconis de Rincón O, Montenegro JC, Vera R, Carvajal AM, de Gutiérrez RM, Del Vasto S, Saborio E, et al. Reinforced Concrete Durability in Marine Environments DURACON Project: Long-Term Exposure. Corrosion, 2016 ;72(6):824-833. DOI: 10.5006/1893.
    DOI  |   Google Scholar
  59. Santiago-Hurtado G, Maldonado-Bandala EE, Olguin Coca FJ, Almeraya-Calderón F, Torres-Acosta A, Baltazar-Zamora MA.Electrochemical Behavior of Reinforced Concrete and Its Relation With the Environment of Xalapa, Veracruz. International Journal of Electrochemical Science. 2012;7(10):9825 - 9834.
     Google Scholar


Most read articles by the same author(s)

1 2 > >>