Integration of Floating Solar Photovoltaic Systems with Hydropower Plants in Greece


  •   John Vourdoubas


Floating solar photovoltaics in water bodies is a novel clean energy technology which has been developed rapidly during the last decade. The current work investigates the possibility and the potential of installing floating photovoltaic systems in the existing hydropower plants in Greece. Studies related with the use of floating photovoltaics in water reservoirs in Greece are limited so far. The characteristics of the existing 24 hydropower plants in Greece have been used for the estimation of the solar photovoltaic systems which can be installed in their water reservoirs. It has been found that the nominal power of these solar energy systems which can be installed in their water reservoirs, covering 10% of their water surface, is at 3,861 MWp while the annual generated electricity at 5,212.35 GWh corresponding at 10.04 % of the annual electricity demand in the country. The capacity factor of the integrated solar and hydro power systems is increased by more than 20%. The research indicates that the existing hydropower plants in Greece can host, in their water dams, floating photovoltaic systems generating significant amounts of green electricity while they also result in many environmental benefits. These novel solar energy systems can contribute, together with other benign energy technologies, in the achievement of the national and EU target for net zero carbon emissions by 2050.

Keywords: Electricity, Floating Solar Photovoltaics, Greece, Hydropower Plants, Water Reservoirs


Miah MS, Rahman RM, Kabir R. Techno-Economic Analysis of Floating Solar PV Integrating with Hydropower Plant in Bangladesh. Green Technologies Conference, 2021.

Argyrakis I. Hydroelectric power plants of P.P.C.S.A. in Greece. [Internet] Retrieved from

Baptista J, Vargas P, Ferreira JR. A techno-economic analysis of floating photovoltaic systems for southern European countries. In 19th International Conference on Renewable Energies and Power Quality, Almeria, Spain, 28-30 July, 2021. DOI: 10.24084/repqj19.214.

Cazzaniga R, Rosa-Clot M, Rosa-Clot P, Tina GM. Integration of PV floating with hydroelectric power plants. Heliyon, 2019; 5(6): EO1918.

Essak L, Ghosh A. Floating Photovoltaics: A Review. Clean Technologies, 2022; 4: 752-769.

Farfan J, Breyer C. Combining floating solar photovoltaic power plants and hydropower reservoirs: A virtual battery of great global potential. Energy Procedia, 2018; 155: 403-411.

Giannakopoulos C, Kostopoulou E, Varotsos K, Plitharas A. Climate change in Greece in the near future. Bank of Greece, 2009.

Gonzalez-Sanchez, R., Kougias, I., Maner-Girona, M., Fahl, F. & Jager-Waldaw A. Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa, Renewable Energy, 2021; 169: 687-699.

DEI. Hydroelectric Power Plants in Greece. [Internet] Public Power Company. Retrieved from:

Kakoulaki G, Gonzalez-Sanchez R, Gracia-Amillo A, Szabo S, De Felice M, Farinosi F, et al. Benefits of pairing floating with hydropower reservoirs in Europe. Renewable and Sustainable Energy Reviews, 2023; 171: 112989.

Lee N, Grunwald U, Rosenlieb E, Mirletz H, Aznar A, Spencer R, et al. Hybrid floating solar-photovoltaic-hydropower systems: benefits and global assessment of technical potential. Renewable Energy, 2020; 162, 1415–1427.

Liu L, Sun Q, Li H, Yin H, Reu X, Wennersten R. Evaluating the benefits of integrating floating photovoltaic and pumped storage power system. Energy Conversion and Management, 2019; 194: 173-185.

Mahmood S, Deilami S, Taghizadeh S. (2021). Floating solar PV and hydropower in Australia: Feasibility, future investigations and challenges. In 31st Australasian Universities Power Engineering Conference, Perth, Australia, 26-30 September.

Maraj A, Kërtusha X, Lushnjari A. Energy performance evaluation for a floating photovoltaic system located on the reservoir of a hydro power plant under the mediterranean climate conditions during a sunny day and a cloudy-one. Energy Conversion and Management: X, 2022; 16: 100275.

Maues JA. Floating solar PV – Hydroelectric power plants in Brazil: energy storage solution with great application potential. International Journal of Energy Production and Management, 2019; 4(1): 40-52. DOI: 10.2495/EQ-V4-N1-40-52.

Mimikou MA, Baltas EA. Assessment of climate change impacts in Greece: A general overview. American Journal of Climate Change, 2013; 3: 46-56.

Silvério NM, Barros RM, Busatto GF, Redón-Santafé M, Santos IFSD, De Mello Valerio VE. Use of floating PV plants for coordinated operation with hydropower plants: case study of hydroelectric plants in Sao Francisco River basin. Energy Conversion Management, 2018; 172: 339-349.

Hellenic Republic, Ministry of the Environment and Energy. National Energy and Climate Plan. Athens, December 2019. Retrieved from

Perez M, Perez R, Ferguson CR, Schlemmer J. Deploying effectively dispatchable PV on reservoirs: Comparing floating PV to other renewable energies. [Internet] 2018. Retrieved from:

Pouran HM, Campos-Lopes MP, Nogueira T, Castelo-Branco DA. Environmental and technical impacts of floating photovoltaic plants as an emerging clean energy technology. iScience, 2022; 25: 105253.

Puppala H, Vasanthawada SRS, Nagababu G, Saini G. Hybrid multi-criteria framework to determine the hierarchy of hydropower reservoirs in India for floatovoltaic installation. International Journal of Thermofluids, 2022; 16: 100229.

Quaranta E, Aggidis G, Boes RM, Comoglio C, De Michele C, Patro ER, et al. Assessing the energy potential of retrofitting the European hydropower fleet. Energy Conversion and Management, 2021; 246: 114655.

Quaranta E, Rosa-Clot M, Pistocchi A. The role of floating PV in the retrofitting of existing hydropower plants and evaporation reduction. In Virtual Conference Solar Hydro, 2021, 7-8 July.

Rasool M, Adil Khan M, Tahir S, Ahmad Khan S, Bin Saeed T, Shahid E. Integration of floating solar PV (FSPV) with proposed hydroelectric project: Technical analysis of Taunsa Barrage for FSPV in south Punjab, Pakistan. In IEEE 23rd International Multitopic Conference, Bahawalpur, Pakistan, 5-7 November, 2020.

Ravichandran N, Fayak HH, Rusu E. Emerging floating photovoltaic system – case studies high dam and Aswan reservoir in Egypt. Processes, 2021; 9: 1005.

Shyam B, Kanakasabapathy P. Feasibility of solar integrated pumped storage system for a grid-connected microgrid under static time of day tariff environment: A case study from India. Renewable Energy, 2022; 192: 200-215.

Spencer RS, Macknick J, Aznar A, Warren A, Reese MO. Floating photovoltaic systems: Assessing the technical potential on man-made water bodies in the continental United States. Environmental Science and Technology, 2019; 53(3): 1680-1689.

The dams of Greece. Greek committee on large dams. Athens, 2013. Retrieved from:

Varlas G, Stefanidis K, Papaioannou G, Panagopoulos Y, Pytharoulis I, Katsafados P, et al. Unravelling precipitation trends in Greece since 1950s using ERA5 climate reanalysis data. Climate, 2022; 10: 12.

Vourdoubas J. Possibility of using floating solar photovoltaics in the hybrid energy systems in the islands of El Hierro, Spain and Crete, Greece. American Academic Scientific Research Journal for Engineering, Technology, and Sciences, 2022; 9(1): 461-475.

Vourdoubas J. Assessment of the potential of installing floating photovoltaics in existing water reservoirs in Greece. European Journal of Energy Research, 2023. [Accepted for publication].

Zervas E, Vatikiotis L, Gareiou Z, Manika S, Herrero-Martin R. Assessment of the Greek national plan of energy and climate change- critical remarks. Sustainability, 2021; 139230: 13143.

Zhou Y, Chang F-J, Chang L-C, Lee W-D, Huang A, Xu C-Y, et al. An advanced complementary scheme of floating photovoltaic and hydropower generation flourishing water-food-energy synergies. Applied Energy, 2020; 275: 115389.


Download data is not yet available.


How to Cite
Vourdoubas, J. 2023. Integration of Floating Solar Photovoltaic Systems with Hydropower Plants in Greece. European Journal of Engineering and Technology Research. 8, 2 (Mar. 2023), 6–12. DOI: