##plugins.themes.bootstrap3.article.main##

The inertia of fragmented ecosystems allows the study of mechanisms that transform these at plant level, the objective of this research was to develop the methodology to evaluate the photosynthetic activity and the capacity of different plant species that are part of the ecosystem, to recover their productivity. The study was carried out in Acajete Puebla, Mexico, delimiting conserved, transitional and agricultural areas. Tests were carried out with two chlorophyll extraction techniques, and at the same time the CO2 consumed by the plant was randomly measured. The technique with the highest recovery was maceration with 2.38 g of chlorophyll per gram of fresh material. On other hand, the productivity of the agricultural area is greater than the one in transition, which is attributed to the fact that agricultural area is more dynamic since most of the species are herbaceous and have a short life span, contributing to the rapid assimilation, storage and sequestration of carbon. This concludes that the herbaceous species Lachemilla procumbens (gross photosynthetic rate 0.19 ppm CO2/s) and Stevia subpubescens (0.16 ppm CO2/ s) are optimal to start the recovery of a degraded ecosystem.

Downloads

Download data is not yet available.

References

  1. Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, et al. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, 2014.
     Google Scholar
  2. Qureshi A, Pariva, Badola R, Hussain SA. A review of protocols used for assessment of carbon stock in forested landscapes. SciVerse ScienceDirect, 2011: 81-87.
     Google Scholar
  3. Robert M. Septième Réunion Du Sous-comité Ouest Et Centre Africain de Corrélation des Sols Pour la Mise en Valeur Des Terres: Ouagadougou, Burkina Faso, 10-17 Novembre 1985. Food and Agricultural Organization of the United Nations, 2001.
     Google Scholar
  4. Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J. Carbon pools and flux of global forest ecosystems. Science, 1994; 14(263): 185–190.
     Google Scholar
  5. Usuga JC, Toro JAR, Alzate MVR, Tapias AJ. Estimation of biomass and carbon stock in plants, soil and forest floor in different tropical forests. Forest Ecology and Management, 2010; 260(10): 1906-1913.
     Google Scholar
  6. Nordh NE, Verwijst T. Above-ground biomass assessments and first cutting cycle production in willow (Salix sp.) coppice-a comparison between destructive and non-destructive methods. Biomass and Bioenergy, 2004; 27(1): pp. 1-8.
     Google Scholar
  7. Víctor HL. Métodos para medir fotosíntesis. Cátedra de Fisiología Vegetal. Argentina, Facultad de Ciencias Agropecuarias, Universidad Nacional de Entre Ríos. 2008.
     Google Scholar
  8. Rivera C, Zapata A, Pinilla G, Donato J, Chaparro B, Jiménez P. Comparación de la estimación de la clorofila-a mediante los métodos espectrofotométrico y fluorométrico. Acta Biológica Colombiana, 2005; 10(2): 95-103.
     Google Scholar
  9. Rodríguez M, Alcántar G, Aguilar A, Etchevers J, Santizó J. Estimación de la concentración de nitrógeno y clorofila en tomate mediante un medidor portátil de clorofila. Terra. 1998; 16(2): 135-141.
     Google Scholar
  10. Instituto Nacional de Ecología y Cambio Climático (INECC). Los Ecosistemas de México. Instituto Nacional de Ecología y Cambio Climático, SEMARNAT. 2009.
     Google Scholar
  11. Schlegel B. Estimaciones de biomasa y carbono en bosques del tipo forestal siempreverde. Simposio Internacional Medición y Monitoreo de la Captura de Carbono en Ecosistemas Forestales. 18-20 October, 2001: Valdivia, Chile.
     Google Scholar
  12. Lichtenthaler K, Welburn AR. Determination of Total Carotenoids and Chlorophylls A and B of Leaf Extracts in Different Solvents. Biochemical Society Transactions. 1983; 11(5): 591-592. http://dx.doi.org/10.1042/bst0110591.
     Google Scholar
  13. Golfari CBY, Pinus Y. Obtenidos a partir del follaje de Pinus Caribea. Morelet Var, 2004; 23(2).
     Google Scholar
  14. Reyes M, Villegas Á, Colinas M, Calderón G. Peso específico, contenido de proteína y de clorofila en hojas de naranjo y tangerino. Agrociencia, 2000; 34(1): 49-55.
     Google Scholar
  15. McDermit DK, Norman JM, Davis JT, Ball TM, Roerner SR, Norman JM, Welles JM. CO2 response curves can be measured with a field-portable closed-loop photosynthesis system. Annals of Forest Science, 1989; 46(Supplement): 416–420.
     Google Scholar