Universidad Autónoma del Estado de Morelos, México
Universidad Autónoma del Estado de Morelos, México
UAM-Iztapalapa, México
Universidad Autónoma del Estado de Morelos, México
* Corresponding author

Article Main Content

Composite materials were manufactured to obtain singular properties to be used as in electrochemical driven energy systems. An electrochemical evaluation was performed on electro-spun nylon 6,6 fibers (Ny), with different concentrations of tetra-para-amino-phenyl porphyrin (PP) and graphene oxide (GO) composite coating over stainless steel (SS), immersed in 1M H2SO4 aggressive sulfuric acid solution. Different film coatings behavior was obtained and compared using electrochemical impedance spectroscopy (EIS). Also, cyclic voltametry (CV) were performed on nylon/PP/GO composite coating system at different scan rates, and over film covered carbon cloth. For the electro-spun composite coating on stainless steel EIS, lower electro-spinning times present higher impedance, hence some corrosion protection. For greater electro-spinning times, larger capacitance values were observed. These were possibly due to thicker coating or mass transport adsorption-diffusion process through the composite film, respectively. For the composite coating, porphyrins, and graphene oxide interaction present ionic conductivity, reducing the impedance and promoting proton formation, property which could be used in charge storage systems.

References

  1. C. García-Pérez, C. Menchaca-Campos, M. A. García-Sánchez, E. Pereyra-Laguna, O. Rodríguez-Pérez and J. Uruchurtu-Chavarín. “Nylon/Porphyrin/Graphene oxide fiber ternary composite, synthesis and characterization. Open J. of Comp. Mats.,2017;7:146-165.
     Google Scholar
  2. C. Menchaca-Campos, C. García-Pérez, I. Castañeda, M. A. García-Sánchez, R. Guardián and J. Uruchurtu. Nylon/Graphene oxide electrospun composite coating. J. of Polymer Sci.,2013;2013:1-9.
     Google Scholar
  3. T. de J. Licona-Sánchez, G. A. Álvarez-Romo, L. H. Mendoza-Huizar, C. A. Galán-Vidal, M. Palomar-Pardavé, M. Romero-Romo, H. Herrera-Hernández, J. M. Juárez-Garcíaand J. Uruchurtu. Nucleation and growth kinetics of electrodeposited sulfate-doped polypyrrole: determination of the diffusion coefficient of SO42? in the polymeric membrane. J. Phys. Chem. B, 2010;114:9737-9743.
     Google Scholar
  4. Y. R. Lee, S. C. Kim, H. Lee, H. M. Jeong, A. V. Raghu, K. R. Reddy and B. K. Kim. Graphite oxides as effective fire retardants of epoxy resin. Macromol. Research, 2011;19:66–71.
     Google Scholar
  5. K. R. Reddy, B. C. Sin, K. S. Ryu, J. Noh and Y. Lee. In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: Synthesis, morphology, structure and electrical conductivity. Synthetic Metals,2009;159:1934-1939.
     Google Scholar
  6. V. Mehta and J. S. Cooper. Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources, 2003;144:32–53.
     Google Scholar
  7. V. Ruiz, Blanco, C. Raymundo-Pinero, E. Khomenko, V. Beguin and F.R. Santamaria. Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors. Electrochim. Acta, 2007;52:4969-4973.
     Google Scholar
  8. K. W. Nam, W. S. Yoon and K. B. Kim. X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors, Electrochim. Acta, 2002;47:3201-3209.
     Google Scholar
  9. T. Kudo, Y. Ikeda, T. Watanabe, M. Hibino, M. Miyayama, H. Abe and K. Kajita. Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes. Solid State Ionics, 2002;152-153:833-841.
     Google Scholar
  10. Y. U. Jeong and A. Manthiram. Nanocrystalline Manganese oxides for electrochemical capacitors with neutral electrolytes. J. Electrochem. Soc., 2002;149:A1419-A1422.
     Google Scholar
  11. R. N. Reddy and R. G. Reddy. Sol–gel MnO2 as an electrode material for electrochemical capacitors. J. Power Sources, 2003;124:330-337.
     Google Scholar
  12. H. Wang, and J. A. Turner. Ferritic stainless steels as bipolar plate material for polymer electrolyte membrane fuel cells. J. Power Sources, 2004;128:193–200.
     Google Scholar
  13. K. R. Reddy, H. M. Jeong, Y. Lee and A. V. Raghu. Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J. Polymer Sci. Polymer Chem. Part A, 2010;48:1477-1484.
     Google Scholar
  14. M. U. Khan, K. R. Reddy, T. Snguanwongchai, E. Haque and V. G. Gomes. Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid and Polymer Sci., 2016;294:1599–1610.
     Google Scholar
  15. F. Gnädinger, P. Middendorf and B. Fox. Interfacial shear strength studies of experimental carbon fibres, novel thermosetting polyurethane and epoxy matrices and bespoke sizing agents. Composites Sci. and Tech., 2016;133:104-110.
     Google Scholar
  16. M. Hassan, K. R. Reddy, E. Haque, A. I. Minett and V. G. Gomes.High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J. Colloid and Interface Sci., 2013;410:43-51.
     Google Scholar
  17. S. J. Han, H. Lee, H. M. Jeong, B. K. Kim, A. V. Raghu and K. R.Reddy. Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J. Macromol. Sci. Part B: Phys., 2014;53:1193-1204.
     Google Scholar
  18. O. Barbieri, M. Hahn, A. Herzog and R. Kotz. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon, 2005;43:1303-1310.
     Google Scholar
  19. H. Wang, M. Yoshio, A. K. Thapa and H. Nakamura. From symmetric AC/AC to asymmetric AC/graphite, a progress in electrochemical capacitors. J. Power Sources, 2007;169:375-380.
     Google Scholar
  20. Z. J. Zhang, X.Y. Chen, B.N. Wang and C.W. Shi. Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties. J. Cryst. Growth,2008;310:5453–5457.
     Google Scholar
  21. Y. R. Lin and H. Teng. A novel method for carbon modification with minute polyaniline deposition to enhance the capacitance of porous carbon electrodes. Carbon, 2003;41:2865-2871.
     Google Scholar
  22. R. Borup and N. Vanderborgh. Design and testing criteria for bipolar plate materials for PEM fuel cell applications.Mat. Res. Soc. MRS. Proc.,1995;393:151–155.
     Google Scholar
  23. A. S. Woodman, E. B. Anderson, K. D. Jayne and M.C. Kimble. Development of corrosion-resistant coatings for fuel cell bipolar plates. Am. Electroplater and Surf. Finishers Soc., AESF Proc., 1999;6:21-24.
     Google Scholar
  24. M.A. García-Sánchez, F. Rojas-González, E.C. Menchaca-Campos, S.R. Tello-Solís, R. I., Y. Quiroz-Segoviano, L.A. Diaz-Alejo, E. Salas-Bañales and E. Campero. A. crossed and linked histories of tetrapyrrolic macrocycles and their use for engineering pores within Sol-Gel matrices. Molecules, 2013;18:588-653.
     Google Scholar
  25. V. V. N. Obreja. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material: A review. Physica E, 2008;40:2596-2605.
     Google Scholar
  26. F. C. Wu, R. L. Tseng, C. C. Hu and C. C Wang. Physical and electrochemical characterization of activated carbons prepared from firewoods for supercapacitors. J. Power Sources, 2004;138:351-359.
     Google Scholar
  27. M. J. L. Oestergaard, A. Visgaard and E. Maahn.AC impedance measurements on coatings for desulphurisation plants. Surf. Coat. Int.J, 1993;76:29-39.
     Google Scholar
  28. H. Xiao and F. Mansfeld. Evaluation of coating degradation with electrochemical impedance spectroscopy and electrochemical noise analysis. J. Electrochem. Soc., 1994;141:2332-2337.
     Google Scholar
  29. J. N. Murray and H. P. Hack. Testing Organic Architectural Coatings in ASTM Synthetic Seawater Immersion Conditions Using EIS. Corrosion, 1992;48:671-685.
     Google Scholar
  30. C. Menchaca-Campos, E. Pereyra-Laguna, C. García-Pérez, M. F. Dominguez, M. A. García-Sánchez and J. Uruchurtu. Synthesis and Characterization of Reduced Graphene Oxide/Polyaniline/Au Nanoparticles. In Hybrid Material for Energy Applications, Chapter 6, Graphene Oxide - Applications and Opportunities, G. S. Kamble, Ed. London: IntechOpen, 2018, pp.75-92.
     Google Scholar
  31. S. Hu, M. Lozada-Hidalgo, F. C. Wang, A. Mishchenko, F. Schedin, R. R. Nair, E. W. Hill, D. W. Boukhvalov, M. I. Katsnelson, R. A. W. Dryfe, I. V. Grigorieva, H. A.Wu and A. K. Geim. Proton transport through one atom thick crystals. Nature, 2014;516:227-230.
     Google Scholar
  32. L. A. Díaz-Alejo, E. C. Menchaca-Campos, J. Uruchurtu-Chavarín, R. Sosa-Fonseca and M. A. García-Sánchez. Effects of the addition of ortho- and para-NH2 substituted tetraphenyl porphyrins on the structure of nylon 66. Int. J. of Polymer Science, 2013:1-14.
     Google Scholar
  33. G.Qu, J. Cheng, X. Li, D. Yuan, P. Chen, X. Chen, B. Wang and H. Peng. Supercapacitors: A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater., 2016;28:3646-3652.
     Google Scholar
  34. J. Zhang, L. B. Kong, B. Wang, Y. C. Luo and L. Kang. In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synth. Met., 2009;159:260-266.
     Google Scholar
  35. B. N. Popov, M. A. Alwohaibiand R. E. White. Using electrochemical impedance spectroscopy as a tool for organic coating solute saturation monitoring. J. Electrochem. Soc., 1993;140:947-951.
     Google Scholar
  36. S. H. Choi, D. H. Kim, A. V. Raghu, K. R. Reddy, H. Lee and K. S. Yoon, “Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J. Macromol. Sci. Part B: Phys.,2012;51:197-207.
     Google Scholar
  37. K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz and J. Machnikowski. Electrochemical capacitors based on highly porous carbons prepared by KOH activation. J. Electrochim. Acta, 2004;49: 515-523.
     Google Scholar
  38. M. Cakici, K. R. Reddy and F. Alonso-Marroquin. Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chemical Eng. J., 2017;309:151-158.
     Google Scholar
  39. M. Hassan, E. Haque, K. R. Reddy, A. I. Minett, J. Chen and V. G. Gomes. Edge enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale,2014;6:11988-11994.
     Google Scholar
  40. G. Wang, L. Zhang and J. Zhang. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 2012;41:797-828.
     Google Scholar
  41. D. I. Njoku, M. Cui, H. Xiao, B. Shang and Y. Li. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self healing functionalities: EIS and spectroscopic techniques. Scientific Reports, 2017;7;15597:1-15.
     Google Scholar


Most read articles by the same author(s)