##plugins.themes.bootstrap3.article.main##

The incorporation, by wet, of 10% w/w from the mixture of two solid wastes, rubber from waste tires and oily petroleum sludge, in proportions 15/85% w/w (M1) and 85/15% w/w (M2) on asphalt binder CAP 50/70 (PA-M1-10 and PA-M2-10) was evaluated against the unmodified binder, regarding the empirical properties: apparent viscosity, flux activation energy, penetration, softening point, specific mass, adhesion to stone aggregates, machining, and compaction temperature, and indirect tensile strength test (ITS) of its hot asphalt mixture (HMA). Test results showed that the modifiers do not significantly change the values of empirical properties under analysis, except the flow activation energy. Modified samples had a lower value when compared to the binder PA 50/70, and the penetration of modified binder PA-M2-10, which for having a higher concentration of rubber tire made it harder, changed to binder class 40-50, according to standard ASTM D946-09A. The ITS behavior of HMA's processed with modified binders showed compatible values with the unmodified binder, meeting the standard ASTM D6931-12.

Downloads

Download data is not yet available.

References

  1. Gama DA, Rosa Jr JM, Melo TJA, Rodrigues JKG. Rheological studies of asphalt modified with elastomeric polymer. Constr. Build. Mater. 2016; 106: 290-295. Doi: https://doi.org/10.1016/j.conbuildmat.2015.12.142.
     Google Scholar
  2. Diab A, Enied M, Singh D. In?uence of aging on properties of polymer-modi?ed asphalt. Constr Build Mater. 2019; 196: 54-65. Doi: https://doi.org/10.1016/j.conbuildmat.2018.11.105.
     Google Scholar
  3. Ouming X, Feipeng X, Sen H, Amirkhanian SN, Zhenjun W. High temperature rheological properties of crumb rubber modified asphalt binders with various modifiers. Constr Build Mater. 2016; 112:49-58. Doi: https://doi.org/10.1016/j.conbuildmat.2016.02.069
     Google Scholar
  4. Da Graça DCS, Cavalcante EH, Cardoso G.. Avaliação da estabilidade de estocagem de ligante asfáltico modificado com blenda de borra oleosa de petróleo e borracha de pneus. Scient. Plena. 2015; 11(11). 113310-1 p. Doi: https://doi.org/10.14808/sci.plena.2015.113310.
     Google Scholar
  5. Naime R.. Meio ambiente e ecossistemas. Eco Debate. ISSN 2446-9394. 2015. Disponível em: <https://www.ecodebate.com.br/2015/01/08/meio-ambiente-e-ecossistemas-artigo-de-roberto-naime/>.
     Google Scholar
  6. Zhang F, Hu C. The research for crumb rubber/waste plastic compound modi?ed asphalt. J. Therm. Anal. Calorim. 2016; 124: 729-741. Doi: https://doi.org/10.1007/s10973-015-5198-4
     Google Scholar
  7. Liu H, Chen Z, Wang W, Wang H, Hao P. Investigation of the rheological modi?cation mechanism of crumb rubber modi?ed asphalt (CRMA) containing TOR additive. Constr. Build. Mater. 2014; 67: 225-233. Doi: https://doi.org/10.1016/j.conbuildmat.2013.11.031
     Google Scholar
  8. Da Graça DCS, Cardoso G, Mothé CG. Thermal behavior of asphalt binder with modifying agents from industrial residues. J. Therm. Anal. Calorim. 2019; 138: 3619-3633. Doi: https://doi.org/10.1007/s10973-019-08371-w.
     Google Scholar
  9. Santana RR, Santos R, Cavalcante EH, Cardoso G. Estabilidade e adesividade de ligante asfalto modificado com blenda de borra oleosa de petróleo com borracha de pneu. Materia. 2017; 23:1. Doi: https://doi.org/10.1590/S1517-707620170001.0313.
     Google Scholar
  10. Biswas A, Potnis S. Plastic bituminous roads: a sustainable technology for better handling distresses. Eur. J. Engin. Tech. Resear. 2022; 7(1): 63-69. Doi: http://dx.doi.org/10.24018/ejers.2022.7.1.2695.
     Google Scholar
  11. Wen G, Zhang Y, Zhang Y, Sun K, Fan Y. Rheological characterization of storage-stable SBS-modi?ed asphalts. Polymer Testing. 2002; 21: 295-302. Doi: https://doi.org/10.1016/S0142-9418(01)00086-1.
     Google Scholar
  12. Alatas T, Yilmaz M, Kök BV and Koral A. Comparison of permanent deformation and fatigue resistance of hot mix asphalts prepared with the same performance grade binders. Constr. Build. Mater. 2012; 30:66-72. Doi: https://doi.org/10.1016/j.conbuildmat.2011.12.021.
     Google Scholar
  13. Yang SH, Lee LC. Characterizing the chemical and rheological properties of severely aged reclaimed asphalt pavement materials with high recycling rate. Constr. Build. Mater. 2016; 111:139-146. Doi: https://doi.org/10.1016/j.conbuildmat.2016.02.058.
     Google Scholar
  14. Zhang F, Hu C, Zhang Y. The effect of PPA on performances and structures of high-viscosity modified asphalt. J. Therm. Anal. Calorim. 2018; Doi: https://doi.org/10.1007/s10973-018-7740-7.
     Google Scholar
  15. Behnood A, Gharehveran MM. Morphology, rheology and physical properties of polymer-modifed asphalt binders. Eur Pol. Journal. 2019; 112: 766-791. Doi: https://doi.org/10.1016/j.eurpolymj.2018.10.049
     Google Scholar
  16. Wang Q, Li S, Wu X, Wang S, Ouyang C. Weather aging resistance of different rubber modi?ed asphalts. Constr. Build. Mater. 2016; 106: 443-448. Doi: https://doi.org/10.1016/j.conbuildmat.2015.12.138.
     Google Scholar
  17. Xiang L, Cheng J, Kang S. Thermal oxidative aging mechanism of crumb rubber/SBS composite modi?ed asphalt. Constr. Build. Mater. 2015 75: 169-175. Doi: https://doi.org/10.1016/j.conbuildmat.2014.08.035.
     Google Scholar
  18. Shen J, Li B, Xie Z. Interaction between crumb rubber modifier (CRM) and asphalt binder in dry process. Constr. Build. Mater. 2017; 149: 202-206. Doi: https://doi.org/10.1016/j.conbuildmat.2017.04.191.
     Google Scholar
  19. Ge D, Yan K, You Z, Xu H. Modi?cation mechanism of asphalt binder with waste tire rubber and recycled polyethylene. Constr. Build. Mater. 2016; 126: 66-76. Doi:
     Google Scholar
  20. https://doi.org/10.1016/j.conbuildmat.2016.09.014.
     Google Scholar
  21. Sultana S, Bhasin A. Effect of chemical composition on rheology and mechanical properties of asphalt binder. Constr. Build. Mater. 2014; 72: 293-300. Doi: https://doi.org/10.1016/j.conbuildmat.2014.09.022.
     Google Scholar
  22. Guangji H, Jianbing L, Guangming Z. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazar Mater. 2013; 261:470-490. Doi:
     Google Scholar
  23. https://doi.org/10.1016/j.jhazmat.2013.07.069.
     Google Scholar
  24. Jasmine J, Mukherji S. Characterization of oily sludge from a refinery and biodegradability assessment using various hydrocarbon degrading strains and reconstituted consortia. J Enviro Manage. 2015; 149(1): 118-125. Doi: https://doi.org/10.1016/j.jenvman.2014.10.007.
     Google Scholar
  25. Wang R, Zhao Z, Qianqian Y, Xiang Y, Wang Z. Additive adsorption behavior of sludge and its in?uence on the slurrying ability of coal–sludge–slurry and petroleum coke-sludge-slurry. App Therm Engin. 2018; 128: 1555-1564. Doi: https://doi.org/10.1016/j.applthermaleng.2017.09.133.
     Google Scholar
  26. Sanaa J, Adewale G, Shadi WH. Recent improvements in oily wastewater treatment: Progress. challenges. and future opportunities. J. Enviro. Sciences. 2015 Nov.; 37 (1): 15-30. Doi: https://doi.org/10.1016/j.jes.2015.04.011.
     Google Scholar
  27. Silva DC, Lucas CRS, Juviniano HBM, Moura MCPA, Dantas TNC, Dantas Neto AA. Analysis of the use of microemulsion systems to treat petroleum sludge from a water ?otation unit. J. Enviro. Chemi. Engi. 2019; 7: 102934. Doi: https://doi.org/10.1016/j.jece.2019.102934.
     Google Scholar
  28. Bernucci LB, Motta LMG, Ceratti JAP, Soares JB. Pavimentação asfáltica: formação básica para engenheiros”. Rio de Janeiro. PETROBRAS. ADEBA. 2006.
     Google Scholar
  29. Shirini B, Imaninasab R. Performance evaluation of rubberized and SBS modi?ed porous asphalt Mixtures. Constr. Build. Mater. 2016; 107: 165-171. Doi: https://doi.org/10.1016/j.conbuildmat.2016.01.006.
     Google Scholar
  30. Zhang F, Hu C, Zhuang W. The research for low-temperature rheological properties and structural characteristics of high-viscosity modi?ed asphalt. J Therm Anal Calorim. 2018; 131:1025-1034.
     Google Scholar
  31. Rasool RT, Song P, Wang S. Thermal analysis on the interactions among asphalt modi?ed with SBS and different degraded tire rubber. Constr Build Mater. 2018; 182:134-143.
     Google Scholar
  32. Zhang F, Hu C. In?uence of aging on thermal behaviour and characterization of SBR compound-modi?ed asphalt. J Therm Anal Calorim. 2014; 115: 1211-1218. doi: 10.1007/s10973-013-3338-2.
     Google Scholar
  33. Zhang F, Hu C. The research for thermal behaviour. creep properties and morphology of SBS-modi?ed asphalt. J Therm Anal Calorim. 2015; 121: 651-661. Doi: 10.1007/s10973-015-4595-z.
     Google Scholar
  34. Zhao X, Wang S, Wang Q, Yao H. Rheological and structural evolution of SBS modi?ed asphalts under natural weathering. Fuel. 2016; 184: 242-247. Doi: https://doi.org/10.1016/j.fuel.2016.07.018.
     Google Scholar
  35. Tang P, Mo L, Pan C, Fang H, Javilla B, Riara, M. Investigation of rheological properties of light colored synthetic asphalt binders containing different polymer modi?ers. Constr. Build. Mater. 2018; 161: 175-185. Doi: https://doi.org/10.1016/j.conbuildmat.2017.11.098.
     Google Scholar
  36. Kim H, Lee SJ, Amirkhanian SN. Rheology of warm mix asphalt binders with aged binders. Const. Build. Mater. 2011; 25:183-189. Doi: https://doi.org/10.1016/j.conbuildmat.2010.06.040.
     Google Scholar
  37. Bringel RM, Alencar AEV, Soares JB, Soares SA, Nascimento DR, Costa EF. Thermo-rheological behavior of modified bitumens adding virgin and waste polymers. 2008. https://www.researchgate.net/publication/261063347. Accessed November, 2021.
     Google Scholar
  38. Lima CS, Tomé LGA, Sant’ana HB, Soares JB, Soares SA. Estudo do comportamento reológico por meio de curvas mestras dos ligantes asfalto-borracha. Instituto Brasileiro de Petróleo. Gás e Biocombustíveis-IBP. 2008;
     Google Scholar
  39. <http://ceasf.petrobras.com.br/portalPublicacao.do?method=view&codigo=1334>.
     Google Scholar
  40. Feitosa JPM, Alencar AEV, Filho NW, de Souza JRR, Castelo Branco VTF, Soares JB, Soares SA, Ricardo NMPS. Evaluation of sun-oxidized carnauba wax as warm mix asphalt additive. Constr. Build. Mater. 2016; 115: 294-298.
     Google Scholar
  41. Khan IM, Kabir S, Alhussain MA, Almansoor FF Asphalt design using recycled plastic and crumb-rubber waste for sustainable pavement construction. Proc Engineer. 2016; 145: 1557-1564. Doi: https://doi.org/10.1016/j.proeng.2016.04.196.
     Google Scholar
  42. Wang. M.; Liu. L. Investigation of microscale aging behavior of asphalt binders using atomic force microscopy. Constr. Build. Mater. 2017; 135: 411-419. Doi: https://doi.org/10.1016/j.conbuildmat.2016.12.180.
     Google Scholar
  43. Singh M, Kumar P, Maurya MR. Strength characteristics of SBS modi?ed asphalt mixes with various aggregates. Constr. Build. Mater. 2013;41: 815-823.
     Google Scholar
  44. Doi: https://doi.org/10.1016/j.conbuildmat.2012.12.062.
     Google Scholar
  45. Khatri S, Tamrakar GBS. Experimental investigation of bituminous concrete mix using rice husk ash as a mineral filler. Inter. J. Scienc Research. 2019; 8(10): 1702-1705. Doi: 10.21275/ART20202294.
     Google Scholar
  46. Nwaobakata C, Agwunwamba JC. Influence of periwinkle Shells ash as filler in hot mix asphalt. Inter. J. Scienc Research. 2014; 3(7): 2369-2373. Doi: 10.21275/020141340.
     Google Scholar
  47. Ibrahim SK. Effect of polystyrene polymer modifier and glass powder filler on the mechanical characteristics of hot mix asphalt. Inter. J. Scienc Research. 2018; 7(3): 1881-1886. Doi: 10.21275/ART20179776.
     Google Scholar