##plugins.themes.bootstrap3.article.main##

Microstructured films of undoped zinc oxide (ZnO) and ZnO doped with nickel (ZnO:Ni) were grown by hot filament chemical vapor deposition (HFCVD) technique on Si (100) substrates at 500 °C. Pellets of ZnO and ZnO:NiO as oxidant agenst were used. A shift to the right around 0.17 degree of the X-Ray Diffraction pattern of the ZnO:Ni film was observed with respect to undoped ZnO films. Morphologically by Scanning Electron Microscopy was noticed a Core-Shell type growth in ZnO undoped and a nanostructured type (Nano-wire) in ZnO doped with Ni. Photoluminescence measurements showed an increase in the intensity of the green emission band of ZnO:Ni. It was attributed to defects of oxygen vacancies (VO), zinc vacancies (VZn), zinc interstitials (Zni), oxygen interstitials (Oi), and oxygen vacancies complex (VO complex) in the structure of the film. The incorporation of Ni atoms in the ZnO structure stresses the crystal lattice, leaving behind a large number of surface defects that increase the emission of PL.

Downloads

Download data is not yet available.

References

  1. Ü. Özgür et al., “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, no. 4, pp. 1–103, 2005.
     Google Scholar
  2. J. Wang, R. Chen, L. Xiang, and S. Komarneni, “Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review,” Ceram. Int., vol. 44, no. 7, pp. 7357–7377, 2018.
     Google Scholar
  3. L. Umaralikhan and M. J. M. Jaffar, “Green synthesis of ZnO and Mg doped ZnO nanoparticles, and its optical properties,” J. Mater. Sci. Mater. Electron., vol. 28, no. 11, pp. 7677–7685, 2017.
     Google Scholar
  4. C. C. Singh and E. Panda, “Zinc interstitial threshold in Al-doped ZnO film: Effect on microstructure and optoelectronic properties,” J. Appl. Phys., vol. 123, no. 16, 2018.
     Google Scholar
  5. A. S. Fedorov, M. A. Visotin, A. S. Kholtobina, A. A. Kuzubov, N. S. Mikhaleva, and H. S. Hsu, “Investigation of intrinsic defect magnetic properties in wurtzite ZnO materials,” J. Magn. Magn. Mater., vol. 440, pp. 5–9, 2017.
     Google Scholar
  6. Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, “Synthesis of p-type ZnO films,” J. Cryst. Growth, vol. 216, no. 1, pp. 330–334, 2000.
     Google Scholar
  7. K. H. Bang, D. K. Hwang, M. C. Park, Y. D. Ko, I. Yun, and J. M. Myoung, “Formation of p-type ZnO film on InP substrate by phosphor doping,” Appl. Surf. Sci., vol. 210, no. 3–4, pp. 177–182, 2003.
     Google Scholar
  8. Y.-Z. Li, Q.-J. Feng, B. Shi, C. Gao, D.-Y. Wang, and H.-W. Liang, “Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire,” Chinese Phys. B, vol. 29, no. 1, p. 18102, 2020.
     Google Scholar
  9. D. Alameri, L. E. Ocola, and I. Kuljanishvili, “ Mask-free fabrication and chemical vapor deposition synthesis of ultrathin zinc oxide microribbons on Si/SiO 2 and 2D substrates ,” J. Vac. Sci. Technol. A, vol. 36, no. 5, p. 05G506, 2018.
     Google Scholar
  10. S. R. Christy, L. S. Priya, M. Durka, A. Dinesh, N. Babitha, and S. Arunadevi, “Simple Combustion Synthesis, Structural, Morphological, Optical and Catalytic Properties of ZnO Nanoparticles,” J. Nanosci. Nanotechnol., vol. 19, no. 6, pp. 3564–3570, 2019.
     Google Scholar
  11. N. P. Shetti, S. D. Bukkitgar, K. R. Reddy, C. V. Reddy, and T. M. Aminabhavi, “ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications,” Biosens. Bioelectron., vol. 141, no. March, p. 111417, 2019.
     Google Scholar
  12. W. A. Bhutto et al., “Controlled Growth of Zinc Oxide Nanowire Arrays by Chemical Vapor Deposition ( CVD ) Method,” vol. 19, no. 8, pp. 135–141, 2019.
     Google Scholar
  13. L. Martínez, D. Becerra, and V. Agarwal, “Dual layer ZnO configuration over nanostructured porous silicon substrate for enhanced memristive switching,” Superlattices Microstruct., vol. 100, pp. 89–96, 2016.
     Google Scholar
  14. M. Willander, M. A. Abbasi, K. Khun, M. Hussain, Z. H. Ibupoto, and O. Nur, “UV detectors and LEDs in different metal oxide nanostructures,” Oxide-based Mater. Devices V, vol. 8987, p. 89871Y, 2014.
     Google Scholar
  15. Y. Ning, Z. Zhang, F. Teng, and X. Fang, “Novel Transparent and Self-Powered UV Photodetector Based on Crossed ZnO Nanofiber Array Homojunction,” Small, vol. 14, no. 13, pp. 1–9, 2018.
     Google Scholar
  16. F. Khan, W. Khan, and S. D. Kim, “High-performance ultraviolet light detection using nano-scale-fin isolation AlGaN/GaN heterostructures with ZnO nanorods,” Nanomaterials, vol. 9, no. 3, pp. 1–14, 2019.
     Google Scholar
  17. S. H. Park, “Properties of the Two-Dimensional Electron-Gas of a Hybrid MgZnO/InGaN/ZnO Heterostructure with an InGaN Channel Layer,” J. Korean Phys. Soc., vol. 75, no. 4, pp. 326–330, 2019.
     Google Scholar
  18. K. Ding, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, “Comparative study of BeMgZnO/ZnO heterostructures on c-sapphire and GaN by molecular beam epitaxy,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 38, no. 2, p. 23408, 2020.
     Google Scholar
  19. Y.-H. Yang, J. Li, Q. Chen, W.-Q. Zhu, X.-F. Li, and J.-H. Zhang, “Graphitic carbon nitride/polyvinylpyrrolidone composite dielectric for low-voltage flexible InZnO thin film transistor grown on a polyethylene terephthalate substrate,” IEEE Electron Device Lett., vol. 41, no. 3, pp. 381–384, 2020.
     Google Scholar
  20. H. G. Lintz, “Transition Metal Oxides: Surface Chemistry and Catalysis,” 1990, pp. 895–895.
     Google Scholar
  21. R. López, G. García, A. Coyopol, T. Díaz, and E. Rosendo, “Effect of nitrogen gas in the agglomeration and photoluminescence of Zn-ZnO nanowires after high-temperature annealing,” Rev. Mex. física, vol. 62, no. 1, pp. 1–4, 2016.
     Google Scholar
  22. B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction, Third Edition .” Prentice-Hall , New York , 2001.
     Google Scholar
  23. R. Elilarassi and G. Chandrasekaran, “Synthesis , Structural and Magnetic Characterization of Ni-Doped ZnO Diluted Magnetic Semiconductor,” Am. J. Mater. Sci., vol. 2, no. 3, pp. 46–50, 2012.
     Google Scholar
  24. Q. Ahsanulhaq, J. H. Kim, N. K. Reddy, and Y. B. Hahn, “Growth mechanism and characterization of rose-like microspheres and hexagonal microdisks of ZnO grown by surfactant-free solution method,” J. Ind. Eng. Chem., vol. 14, no. 5, pp. 578–583, 2008.
     Google Scholar
  25. S. H. Kim, A. Umar, and Y.-B. Hahn, “Growth and formation mechanism of sea-urchin like ZnO nanostructures on Si,” Korean J. Chem. Eng., vol. 23, no. 6, pp. 1069–1069, 2006.
     Google Scholar
  26. H.-M. Xiong, D. G. Shchukin, H. Möhwald, Y. Xu, and Y.-Y. Xia, “Sonochemical Synthesis of Highly Luminescent Zinc Oxide Nanoparticles Doped with Magnesium(II),” Angew. Chemie Int. Ed., vol. 48, no. 15, pp. 2727–2731, 2009.
     Google Scholar
  27. R. Janisch, P. Gopal, and N. A. Spaldin, “Transition metal-doped TiO2 and ZnO - Present status of the field,” J. Phys. Condens. Matter, vol. 17, no. 27, 2005.
     Google Scholar
  28. B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates,” Appl. Phys. Lett., vol. 79, no. 7, pp. 943–945, 2001.
     Google Scholar
  29. D. K. Hwang et al., “Study of the photoluminescence of phosphorus-doped p -type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett., vol. 86, no. 15, pp. 1–3, 2005.
     Google Scholar
  30. F. H. Leiter, H. R. Alves, A. Hofstaetter, D. M. Hofmann, and B. K. Meyer, “The oxygen vacancy as the origin of a green emission in undoped ZnO,” Phys. Status Solidi Basic Res., vol. 226, no. 1, pp. 5–6, 2001.
     Google Scholar
  31. H. Zeng, W. Cai, J. Hu, G. Duan, P. Liu, and Y. Li, “Violet photoluminescence from shell layer of Zn/ZnO core-shell nanoparticles induced by laser ablation,” Appl. Phys. Lett., vol. 88, no. 17, pp. 1–4, 2006.
     Google Scholar
  32. B. Cao, W. Cai, and H. Zeng, “Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays,” Appl. Phys. Lett., vol. 88, no. 161101, pp. 1–4, 2006.
     Google Scholar