The Effect of Nanoparticles in Single Lap Joints Studied by Numerical Analyses


  •   Panagiotis J. Charitidis


The present study concerns with the finite element investigation of balanced aluminium single lap joints subjected to tensile loading. Epoxy adhesives were used for bonding having different nanoparticles rate in the epoxy resin (0.5, 1.0, 1.5 and to 2 wt. %, respectively). Two-dimensional (2D) finite element analysis has been employed to determine the peeling stress, von Mises stress, and the shear strain distribution across the midplane of the joints. The results mainly prove that the nanoparticles rate in the adhesive material directly affects the joint tensile strength. Nanocomposite adhesives present a higher failure load than that of neat adhesives. Furthermore, nanocomposite adhesive with 0.5 wt. % of nanoparticles generated strengths (shear and peeling strengths) more than neat adhesives, after which decreased by further addition of the nanoparticles.

Keywords: Aluminium, Alumina nanoparticle, Finite element analysis, Single lap joint


J. F. Owens and P. Lee-Sullivan, “Stiffness behaviour due to fracture in adhesively bonded composite-to-aluminum joints, I. Theoretical model,” I. J. Adhes. Adhes., vol. 20, pp. 39–45, 2000.

L. J. Hart-Smith, Adhesive-bonded double-lap joints; Technical report, NASA CR, 1973.

A. R. Rispler, L. Tong and G. P. Steven, “Shape optimization of adhesive fillets,” I. J. Adhes. Adhes., vol. 20, pp. 221–231, 2000.

S. Ariaee, A. Tutunchi, A. Kianvash and A. A. Entezami, “Modeling and optimization of mechanical behavior of bonded composite–steel single lap joints by response surface methodology,” I. J. Adhes. Adhes., vol. 54, pp. 30–39, 2014.

U. Vietri, L. Guadagn, M. Raimondo, L. Vertuccio and K. Lafdi, “Nanofilled epoxy adhesive for structural aeronautic materials,” Compos. Part B: Eng., vol. 61, pp. 73-83, 2014.

Y. H. Lee, D. W. Lim, J. H. Choi, Kweon and M. K. Yoon, “Failure load evaluation and prediction of hybrid composite double lap joints,” Compos. Struct., vol. 92, pp. 2916-2926, 2010.

L. F. M. da Silva, A. Öchsner and R. D. Adams, Handbook of Adhesion Technology; Heidelberg, Springer, 2011.

R. D. Adams, J. Comyn, W. C. Wake, Structural Adhesive Joints in Engineering, Springer 1997, p. 359.

L. D. Grant, R. D. Adams and L. F. da Silva, “Experimental and numerical analysis of single-lap joints for the automotive industry, | I. J. Adhes. Adhes., vol. 29, pp. 405-413, 2009.

A. Higgins, “Adhesive bonding of aircraft structures,” I. J. Adhes. Adhes., vol. 20, pp. 367–376, 2000.

E. Sancaktar and S. Kumar, “Selective use of rubber toughening to optimize lap-joint strength,” J. Adhes. Sci. Technol., vol. 14, pp. 1265-1296, 2000.

G. Dean, L. Crocker, B. Read and L. Wright, “Prediction of deformation and failure of rubber toughened adhesive joints,” I. J. Adhes. Adhes., vol. 24, pp. 295-306, 2004.

A. Buchman, H. Dodiuk-Kenig, A. Dotan, R. Tenne and S. Kenig, “Toughening of epoxy adhesives by nanoparticles,” J. Adhes. Sci. Technol., vol. 23, pp. 753-768, 2009.

A. J. Kinloch, J. H. Lee, A. C. Taylor, S. Sprenger, C. Eger and D. Egan, “Toughening structural adhesives via nano-and micro-phase inclusions,” J. Adhes., vol. 79, pp. 867-873, 2003.

J. Zhang, R. Luo and C. Yang, “A multi-wall carbon nanotube-reinforced high-temperature resistant adhesive for bonding carbon/carbon composites,” Carbon J., vol. 50, pp. 4922-4925, 2012.

S. Yu, M. N. Tong and G. Critchlow, “Use of carbon nanotubes reinforced epoxy as adhesives to join aluminum plates,” Mater des J., vol. 31, pp. 126-129, 2010.

M. Shneider, H. Dodiuk, S. Kenig and R. Tenne, “The effect of tungsten sulfide fullerene-like nanoparticles on the toughness of epoxy adhesives,” J. Adhes. Sci. Technol., vol. 24, pp. 1083-1095, 2010.

A. Kaboorani and B. Riedl, “Effects of adding nano-clay on performance of polyvinyl acetate (PVA) as a wood adhesive,” Compos. Part A: Appl. Sci. Manuf., vol. 42 (8), pp. 1031-1039, 2011.

U. K. Vaidya, A. R. S. Gautam, M. Hosur and P. Dutta, “Experimental– numerical studies of transverse impact response of adhesively bonded lap joints in composite structures,” I. J. Adhesion, vol. 26 (3), pp. 184-198, 2006.

H. Dodiuk, I. Blinsky, A. Dotan and A. Buchman, “Nanotailoring of epoxy adhesives by polyhedral-oligomeric-sil-sesquioxanes (POSS), Int. J. Adhes. Adhes. 25 (3) (2005) 211–218.

E. N. Gilbert, B. S. Hayes and J. C. Seferis, “Nano-alumina modified epoxy based film adhesives,” Polym. Eng. Sci., vol. 43(5), pp. 1096-1104, 2003.

H. Ma, G. Wei, Y. Liu, X. Zhang, J. Gao, F. Huang, B. Tan, Z. Song and J. Qiao, “Effect of elastomeric nanoparticles on properties of phenolic resin,” Polymer, vol. 46 (23), pp. 10568-10573, 2005.

L. Zhai, G. Ling, J. Li and Y. Wang, “The effect of nanoparticles on the adhesion of epoxy adhesive,” Mater. Lett., vol. 60 (25–26), pp. 3031-3033, 2006.

P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang and S. Fu, “Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties,” Polymer, vol. 52, pp. 4001-4010, 2011.

X. Wang, E. N. Kalali, J. Wan and D. Wang, “Carbon-family materials for flame retardant polymeric materials,” Prog. Polym. Sci., vol. 69, pp. 22-46, 2017.

D. Y. Wang, A. Leuteritz, Y. Z. Wang, U. Wagenknecht and G. Heinrich, “Preparation and burning behaviors of flame retarding biodegradable poly (lactic acid) nanocomposite based on zinc aluminum layered double hydroxide,” Polym. Degrad. Stab, 95, pp. 2474-24, 2010.

X. Xu, J. Chen, J. Zhou and B. Li, “Thermal conductivity of polymers and their nanocomposites,” Adv. Mater, vol. 30, 2018.

C. Gao, S. M. Zhang, F. Wang, B. Wen, C. C. Han and Y. F. Ding et al., “Graphene networks with low percolation threshold in ABS nanocomposites: Selective localization and electrical and rheological properties,” ACS Appl. Mater. Interfaces, vol. 6, pp. 12252-12260, 2014.

Y. Cui, S. I. Kundalwal and S. Kumar, “Gas barrier performance of graphene/polymer nanocomposites,” Carbon, vol. 98, pp. 313-333, 2016.

Z. B. Pan, J. W. Zhai, and B. Shen, “Multilayer hierarchical interfaces with high energy density in polymer nanocomposites composed of BaTiO3@TiO2@Al2O3 nanofibers,” J. Mater. Chem. A, vol. 5, pp. 15217-15226, 2017.

C. C. Han, F. Wang, C. Gao, P. Liu, Y. F. Ding and S. M. Zhang, et al., “Transparent epoxy-ZnO/CdS nanocomposites with tunable UV and blue light-shielding capabilities,” J. Mater. Chem. C, 3, pp. 5065-5872, 2015.

H. A. Al-Turaif, “Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin,” Prog. Org. Coat., vol. 69, pp. 241–246, 2010.

R. P. Singh, M. Zhang and D. Chan, “Toughening of a brittle thermosetting polymer: effects of reinforcement particle size and volume fraction,” J. Mater. Sci., vol. 37, pp. 781–788, 2002.

J. Cho, M. S. Joshi and C. T. Sun, “Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles,” Compos. Sci. Technol., vol. 66, pp. 1941–1952, 2006.

S. H. Jeong, S. Y. Yeo, and S. C. Yi, “The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers,” J. Mater. Sci., vol. 40, pp. 5407–5411, 2005.

S. K. Kumar, N. Jouault, B. Benicewicz, T. Neely, “Nanocomposites with polymer grafted nanoparticles,” Macromolecules, vol. 46, pp. 3199-3214, 2013.

M. M Khani, D. Woo, E. L. Mumpower and B. C. Benicewicz, “Poly (alkyl methacrylate)-grafted silica nanoparticles in polyethylene nanocomposites,” Polymer, vol. 109, pp. 339-348, 2017.

S. K. Kumar and R. Krishnamoorti, “Nanocomposites: Structure, phase behavior, and properties” Ann.Rev. Chem. Biomol. Eng, vol. 1, pp. 37-58, 2010.

H. M. Y. Ahmad, N. S. Midhat and F. J. Mohd, “A review: Synthetic strategy control of magnetite nanoparticles production,” Advances in Nano Research, vol. 6 (1), pp. 1-19, 2017.

D. Minelga and V. Norvydas, “Properties of halogensilane modified poly (vinyl acetate) dispersion ISSN 1392-1320,” Mater. Sci. (Medziagotyra), vol. 11 (2), pp. 146-149, 2005.

A. Kaboorani and B. Riedl, “Nano-aluminum oxide as a reinforcing material for thermoplastic adhesives,” J. Indust. Eng. Chem., vol. 18 (3), pp. 1076–1081, 2012.

E. Lara-curzi and M. K., Determination of interfacial properties of stress in continuous fibre-reinforced ceramic composites. In: Bull JW, editor. Numerical analysis and modelling of composite materials, Blaclie Academic and Professional, 1993.

W. Deng and S. A. Meguid, “Interfacial debonding of an elliptical inhomogeneity in piezoelectric solids,” ASME J. Appl. Mech., vol. 43, pp. 1369-1386.

J. W. Gillespie and J. L. A. Carlsson, “Interlaminar fracture of laminated composite materials,” Delaware University Composite Centre, 1993.

C. Galiotis, N. Melanitis, C. Vlattas and A Wall, “Interfacial measurement in single fibre mode composites,” Proceedings of the Second International conference on deformation and fracture of composites. Manchester, March: The Manchester Conference Centre, UMIST, pp. 29-31, 1993.

S. F. Zheng, M. Denda and G. J. Weng, “Interfacial partial debonding and its influence on the elasticity of a two phase composite,” Mech. Mater., vol. 32(12), pp. 695-709, 2000.

A. C. Taylor, Handbook of adhesion technology. Berlin: Springer, 2011, ch. 55, Adhesives with nanoparticles, pp. 1437–1460.

A. J. Kinloch, J. H. Lee, A. C. Taylor, D. Egan, C. Eger and S. Sprenger, “Nanoadhesives: toughness and high strength,” Adhäsion Kleben & Dichten., vol. 47, pp. 20-24, 2003.

A. Hartwig, A. Lühring and J. Trautmann, “Spheroidal nanoparticles in epoxide-based adhesives,” Macromol. Mater. Eng., vol. 294, pp. 363-379, 2009.

A. Wolf, A. Buchman, A. Eitan, T. Fine, Y. Nevo, A. Heyman and O. Shoseyov, “Improved adhesives containing CNT/SP1 nano fillers,” J. Adhes., vol. 88, pp. 435-451, 2012.

L. Feng and D. H. Bae, “Joining STS304l sheets by using nano-adhesives,” J. Mech. Sci. Technol., vol. 27, pp. 1943-1947, 2013.

A. Dorigato, A. Pegoretti, F. Bondioli and M. Messori, “Improving epoxy adhesives with zirconia nanoparticles,” Compos. Interface, vol. 17, pp. 873-892, 2010.

A. Dorigato and A. Pegoretti, “The role of alumina nanoparticles in epoxy adhesives,” J. Nanopart. Res., vol. 13, pp. 2429–2441, 2011.

K. T. Hsiao, J. Alms and S. G. Advani, “Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites,” Nanotechnology, vol. 14, pp. 791-793 2003.

S. A. Meguid and Y. Sun, “On the tensile and shear strength of nano-reinforced composite interfaces,” Mater. Des., vol. 25, pp. 289-296, 2004.

S. Bhowmik, R. Benedictus, J. A. Poulis, H. W. Bonin and V. T. Bui, “High-performance nanoadhesive bonding of titanium for aerospace and space applications,” Int. J. Adhes. Adhes., vol. 29, pp. 259-267, 2009.

S. Patel, A. Bandyopadhyay, A. Ganguly and A. K. Bhowmick, “Synthesis and properties of nanocomposite adhesives,” J. Adhes. Sci. Technol., vol. 20, pp. 371-385, 2006.

J. Vega Baudrit, S. M. Ballestero M, J. M. M. Martinez and P. Vazquez, et al., “Sintesis y caracterización de nanosílices funcionalizadas injertadas con 3-aminopropil trietoxisilano para ser utilizadas en adhesivos de poliuretano,” Rev Iberoam Polimeros, vol. 8, pp. 138- 162, 2007.

J. Vega Baudrit, Modificacion de las propiedades de adhesivos de poliuretano por adición de nanosílices con diferente polaridad superficial. Universidad de Alicante, Spain, 2005.

J. R. Vega Baudrit, J. M. M. Martinez, M. Camacho Elizondo, “Influencia de las nanoparticulas de silice en polimeros termoplasticos,” Mundo Nano, vol. 6, pp. 40-51, 2013.

S. Hassanajili, M. Khademi and P. Keshavarz, “Influence of various types of silica nanoparticles on permeation properties of polyurethane/silica mixed matrix membranes,” J. Memb Sci., vol. 453, pp. 369-383, 2014.

M. F. Uddin and C. T. Sun, “Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix,” Compos. Sci. Technol., vol. 68, pp. 1637-1643, 2008.

S. Sprenger, “Epoxy resin composites with surface-modified silicon dioxide nanoparticles: A review,” J. Appl. Polym. Sci., vol. 130, pp. 1421- 1428, 2013.

V. K. Srivastava, “Effect of carbon nanotubes on the strength of adhesive lap joints of C/C and C/C-SiC ceramic fibre composites,” Int J. Adhes. Adhes, vol. 31, pp. 486-489, 2011.

M. H. Kang, J. H. Choi and J. H Kweon, “Fatigue life evaluation and crack detection of the adhesive joint with carbon nanotubes,” Compos. Struct., vol. 108, pp. 417-422, 2014.

U. A. Khashaba, A. A. Aljinaidi and M. A Hamed, “Development of CFRE composite scarf adhesive joints with SiC and Al2O3 nanoparticle,” Compos. Struct., vol. 128, pp. 415-427, 2015.

T. F. Klimowicz, “The large scale commercialization of aluminium-matrix composites,” J Miner Met. Mater. Soc., vol. 46(11), pp. 49-53, 1994.

S. Akpınar, “Experimental determination of the mechanical properties of the joints bonded with aluminium oxide and titanium dioxide reinforced adhesives,” Niğde University J. Eng. Sci., vol. 5(2), pp. 244-252, 2016.

U. Avcı, S. Temiz, “A new approach to the production of partially graded and laminated composite material composed of SiC-reinforced 7039 Al alloy plates at different rates,” Compos. Part B, vol. 131, pp. 76-81, 2017.

G. L Burkholder, Y. W. Kwon and R. D. Pollak, Effect of carbon nanotube reinforcement on fracture strength of composite adhesive joints,” J. Mater. Sci., vol. 46, pp. 3370–3377, 2011.

N. Chowdhury, W. K. Chiu and J. Wang et al., “Static and fatigue testing thin riveted, bonded and hybrid carbon fiber double lap joints used in aircraft structures,” Compos. Struct., vol. 121, pp. 315–323, 2015.

T. Sadowski, P. Golewski and E. Zarzeka-Raczkowska, “Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets,” Comput. Mater. Sci., vol. 50, pp. 1256-1262, 2011.

B. Soltannia and F. Taheri, “Influence of nano-reinforcement on the mechanical behavior of adhesively bonded single-lap joints subjected to static, quasi-static, and impact loading,” J. Adhes. Sci. Technol., vol. 29, pp. 424-442, 2015.

A. Silva Neto, D. T. L. D. Cruz and A. F. Avila, “Nano-modified adhesive by graphene: the single lap-joint case,” Mater. Res., vol. 16, pp. 592-596, 2013.

K. Gultekin, S. Akpinar, A. Gurses et al., “The effects of graphene nanostructure reinforcement on the adhesive method and the graphene reinforcement ratio on the failure load in adhesively bonded joints,” Compos. Part B Eng., vol. 98, pp. 362-369, 2016.

J. H. Kweon, J. W. Jung and T. H. Kim et al., “Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding,” Compos. Struct., vol. 75, pp. 192-198, 2006.

G. Kelly, “Load transfer in hybrid (bonded/bolted) composite single-lap joints,” Compos. Struct., vol. 69, pp. 35-43, 2005.

L. J. Hart-Smith, “Bonded-bolted composite joints,” J. Aircraft, vol. 22, pp. 993-1000, 1985.

M. Mansourian-Tabaei, S. H. Jafari and H. A. Khonakdar, “Lap shear strength and thermal stability of diglycidyl ether of bisphenol aepoxy novolac adhesives with nanoreinforcing fillers,” J. Appl. Polym. Sci. vol. 131(6), pp. 40017(1-8), 2014.

L. L. Zhai, G. P. Ling and Y. W. Wang, “Effect of nano-Al2O3 on adhesion strength of epoxy adhesive and steel,” Int. J. Adhes. Adhes., vol. 28 pp. 23–28, 2007.

S. A. Nassar, Z. Wu, K. Moustafa and D. Tzelepis, “Effect of adhesive nanoparticle enrichment on static load transfer capacity and failure mode of bonded steel–magnesium single lap joints,” ASME J. Manuf. Sci. Eng. vol. 137(5) pp. 0511024 (6 pages), 2015.

S. C. Her, “Stress analysis of adhesively-bonded lap joints,” Compos. Struct., vol. 47 pp. 673-678, 1999.

J. P. M. Gon-calves, M. F. S. F. de Moura and P. M. S. T de Castro, “A three dimensional finite element model for stress analysis of adhesive joints,” Int. J. Adhes. Adhes., vol. 22, pp. 357–365, 2002.

G. Wu and A. D. Crocombe, “Simplified finite element modeling of structural adhesive joints,” Compos. Struct. vol. 61(2), pp. 385-391, 1996.

O. Sayman, “Elasto- plastic stress analysis in an adhesively bonded single lap joint,” Compos. Part B, vol. 43 pp. 204–209, 2012.

X. He, “Influence of boundary conditions on stress distributions in a single-lap adhesively bonded joint,” Int. J. Adhes. Adhes., vol. 53 pp. 248–264, 2014.

E. Reina-Romo and J. A. Sanz-Herrera, “Multiscale simulation of particle-reinforced elastic–plastic adhesives at small strains,” Comput. Methods Appl. Mech. Engrg., vol. 200 pp. 2211–2222, 2011.

J. M. Wernik and S. A. Meguid, “Multiscale micromechanical modeling of the constitutive response of carbon nanotube-reinforced structural adhesives,” Int. J. Solids Struct., vol. 51 pp. 2575–2589, 2014.

G.C. Papanicolaou, P. J. Charitidis, D. E. Mouzakis, E. Karachalios, G. Jiga, and D. V. Portan, “Experimental and numerical investigation of balanced boron/epoxy single lap joints subjected to corrosive environmental conditions,” Inter. J. Adhes. Adhes., vol. 68, pp. 9-18, 2016.

G.C. Papanicolaou, P. J. Charitidis, D. E. Mouzakis and G. Jiga, “Experimental and numerical investigation of unbalanced boron/epoxy-aluminum single lap joints subjected to a corrosive environment,” J. Compos. Mater., vol. 50 (2), pp. 145-157, 2015.

A. Dorigato and A. Pegoretti, “The role of the of alumina nanoparticles in epoxy adhesives,” J Nanopart Res, vol. 13, pp. 2429–2441, 2011.

S. A. Yousefsani and M. Tahani, “Edge effects in adhesively bonded composite joints integrated with piezoelectric patches,” Compos. Struct., vol. 200. pp.187-194, 2018.

C. H. Wang. and P. Chalkley, “Plastic yielding of a film adhesive under multiaxial stresses,” Inter. J. Adhes. Adhes., vol. 20(2), pp. 155-164, 2000.

G. Dean, L. Crocker, B. Read and L. Wright, “Prediction of deformation and failure of rubber toughened adhesive joints,” Int. J. Adhes. Adhes., vol. 24, p. 295

X. F. Wu and Y. Zhao, “Stress-function variational method for interfacial stress analysis of adhesively bonded joints,” Int. J. Solids Struct., vol. 50, pp. 4305–4319, 2013.

X. Hou, A. Y. Kanani and J. Ye, “Double lap adhesive joint with reduced stress concentration: Effect of slot,” Compos. Struct., vol. 202, pp. 635-642, 2018.


Download data is not yet available.


How to Cite
Charitidis, P.J. 2020. The Effect of Nanoparticles in Single Lap Joints Studied by Numerical Analyses. European Journal of Engineering and Technology Research. 5, 10 (Oct. 2020), 1288–1293. DOI: