Technological Review of Tubular Daylight Guide System from 1982 to 2020
##plugins.themes.bootstrap3.article.main##
T.D.G.S., “Tubular Daylight Guidance Systems”, are natural lighting processes based on the transport of light. In 1990, they were judged by Littlefair as the most innovative technology in daylighting [1]. From 1982 to 2020, this paper is a state of the art on the different processes of tubular daylight guide systems. The key words used to carry out the census are light pipe; light tube; light guide; sun pipes; solar pipes; solar light pipes; daylight pipes; tubular skylight; sun scoop; tubular daylighting device; tubular daylight guide systems; mirrored light pipe. A classification by type of process is proposed (collection, transport or diffusion) for each technology identified in the literature.
References
P. J. Littlefair, « Review Paper: Innovative daylighting: Review of systems and evaluation methods », Light. Res. Technol., vol. 22, no 1, p. 1‑17, mars 1990.
J. T. Kim et G. Kim, « Overview and new developments in optical daylighting systems for building a healthy indoor environment », Build. Environ., vol. 45, no 2, p. 256‑269, févr. 2010.
X. Zhang, T. Muneer, et J. Kubie, « A design guide for performance assessment of solar light-pipes », Light. Res. Technol., vol. 34, no 2, p. 149‑168, juin 2002.
D. Jenkins et T. Muneer, « Light-pipe prediction methods », Appl. Energy, vol. 79, no 1, p. 77‑86, sept. 2004.
S. Darula, M. Kocifaj, R. Kittler, et F. Kundracik, « Illumination of interior spaces by bended hollow light guides: Application of the theoretical light propagation method », Sol. Energy, vol. 84, no 12, p. 2112‑2119, déc. 2010.
D. J. Carter, « The measured and predicted performance of passive solar light pipe systems », Light. Res. Technol., vol. 34, no 1, p. 39‑51, 2002.
Y. Wu, R. Jin, D. Li, W. Zhang, et C. Ma, « Experimental investigation of top lighting and side lighting solar light pipes under sunny conditions in winter in Beijing », présenté à International Conference on Optical Instruments and Technology: Advanced Sensor Technologies and Applications, 2008, p. 71571O‑71571O‑6.
C. Baroncini, O. Boccia, F. Chella, et P. Zazzini, « Experimental analysis on a 1:2 scale model of the double light pipe, an innovative technological device for daylight transmission », Sol. Energy, vol. 84, no 2, p. 296‑307, févr. 2010.
T. Taengchum, S. Chirarattananon, R. H. B. Exell, et P. Chaiwiwatworakul, « Tracing of daylight through circular light pipes with anidolic concentrators », Sol. Energy, vol. 110, p. 818‑829, déc. 2014.
M. G. Nair, « Performance studies of anidolic concentrator with light pipes for day lighting in buildings », International Journal of Scientific & Engineering Research, vol. 5, no 7, 2014.
G. Courret, « Systèmes anidoliques d’éclairage naturel », EPFL, 1999.
S. C. Molteni, G. Courret, B. Paule, L. Michel, et J. L. Scartezzini, « Design of anidolic zenithal lightguides for daylighting of underground spaces », Sol. Energy, vol. 69, p. 117–129, 2001.
M. Roshan et A. S. Barau, « Assessing Anidolic Daylighting System for efficient daylight in open plan office in the tropics », J. Build. Eng., vol. 8, p. 58‑69, déc. 2016.
F. Binarti et P. Satwiko, « Long-term Monitoring and Simulations of the Daylighting and Thermal Performance of an Anidolic Daylighting System on a Tropical Urban House », Energy Procedia, vol. 78, p. 1787‑1792, nov. 2015.
J.-L. Scartezzini et G. Courret, « Anidolic daylighting systems », Sol. Energy, vol. 73, no 2, p. 123‑135, août 2002.
F. Linhart, S. K. Wittkopf, et J.-L. Scartezzini, « Performance of Anidolic Daylighting Systems in tropical climates – Parametric studies for identification of main influencing factors », Sol. Energy, vol. 84, no 7, p. 1085‑1094, juill. 2010.
G. Courret, J.-L. Scartezzini, D. Francioli, et J.-J. Meyer, « Design and assessment of an anidolic light-duct », Energy Build., vol. 28, no 1, p. 79‑99, août 1998.
A. Rosemann, M. Mossman, et L. Whitehead, « Development of a cost-effective solar illumination system to bring natural light into the building core », Sol. Energy, vol. 82, no 4, p. 302‑310, avr. 2008.
T. Russell, P. Duvall, et S. Davies, « An Investigation Into Renewable Energy: The Solar Canopy Illumination System », nov. 2010.
A. A. Earp, G. B. Smith, J. Franklin, et P. Swift, « Optimisation of a three-colour luminescent solar concentrator daylighting system », Sol. Energy Mater. Sol. Cells, vol. 84, no 1‑4, p. 411‑426, oct. 2004.
B. C. Rowan, L. R. Wilson, et B. S. Richards, « Advanced Material Concepts for Luminescent Solar Concentrators », IEEE J. Sel. Top. Quantum Electron., vol. 14, no 5, p. 1312‑1322, sept. 2008.
N. Aste, L. C. Tagliabue, P. Palladino, et D. Testa, « Integration of a luminescent solar concentrator: Effects on daylight, correlated color temperature, illuminance level and color rendering index », Sol. Energy, vol. 114, p. 174‑182, avr. 2015.
A. Reinders, M. G. Debije, et A. Rosemann, « Measured Efficiency of a Luminescent Solar Concentrator PV Module Called Leaf Roof », IEEE J. Photovolt., vol. 7, no 6, p. 1663‑1666, nov. 2017.
V. Duc Hien et S. Chirarattananon, « Daylighting through Light Pipe for Deep Interior Space of Buildings with Consideration of Heat Gain », p. 461‑475, 2007.
V. D. Hien et S. Chirarattananon, « An experimental study of a facade mounted light pipe », Light. Res. Technol., vol. 41, no 2, p. 123‑142, juin 2009.
I. R. Edmonds, G. I. Moore, G. B. Smith, et P. D. Swift, « Daylighting enhancement with light pipes coupled to laser-cut light-deflecting panels », Light. Res. Technol., vol. 27, no 1, p. 27‑35, mars 1995.
I. R. Edmonds, P. A. Jardine, et G. Rutledge, « Daylighting with angular-selective skylights: Predicted performance », Light. Res. Technol., vol. 28, no 3, p. 122‑130, sept. 1996.
I. R. Edmonds, J. Reppel, et P. Jardine, « Extractors and emitters for light distribution from hollow light guides », Light. Res. Technol., vol. 29, no 1, p. 23‑32, mars 1997.
Garcia Hansen, V., Edmonds, I., et Bell, J. M., « Improving Daylighting Performance of Mirrored Light Pipes », présenté à PLEA2009 - 26th Conference on Passive and Low Energy Architecture, Quebec City, Canada, 2009.
V. Garcia Hansen et I. Edmonds, « Natural illumination of deep-plan office buildings : light pipe strategies », in Faculty of Built Environment and Engineering; Faculty of Science and Technology; School of Design, Göteborg, Sweden, 2003.
M. G. Nair, A. R. Ganesan, et K. Ramamurthy, « Daylight enhancement using laser cut panels integrated with a profiled Fresnel collector », Light. Res. Technol., p. 1477153514556524, oct. 2014.
B. Malet-Damour, S. Guichard, D. Bigot, et H. Boyer, « Study of tubular daylight guide systems in buildings: Experimentation, modelling and validation », Energy Build., vol. 129, p. 308‑321, oct. 2016.
B. Malet-Damour, H. Boyer, S. Guichard, et F. Miranville, « Performance Testing of Light Pipes in real weather conditions for a confrontation with Hemera », présenté à ICRET 2014, Hong Kong - Chine, 2014.
D. Jenkins et T. Muneer, « Modelling light-pipe performances—a natural daylighting solution », Build. Environ., vol. 38, no 7, p. 965‑972, juill. 2003.
L. Shao, A. A. Elmualim, et I. Yohannes, « Mirror lightpipes : Daylighting performance in real buildings », Light. Res. Technol., vol. 30, no 1, p. 37‑44, mars 1998.
C.-Y. Lee, P.-C. Chou, C.-M. Chiang, et C.-F. Lin, « Sun tracking systems: a review », Sensors, vol. 9, no 5, p. 3875‑3890, 2009.
A. Rosemann et H. Kaase, « Lightpipe applications for daylighting systems », Sol. Energy, vol. 78, no 6, p. 772‑780, juin 2005.
J. Song, G. Luo, L. Li, K. Tong, Y. Yang, et J. Zhao, « Application of heliostat in interior sunlight illumination for large buildings », Renew. Energy, vol. 121, p. 19‑27, juin 2018.
G. Luo, L. Li, J. Wang, W. Wang, J. Song, et Y. Yang, « A heliostat integrated with a sun-position sensor for daylighting », Energy Procedia, vol. 158, p. 394‑399, févr. 2019.
[40] W. R. McCluney, L. Kinney, et J. Hutson, « Tracking Solar Lighting System for Core Building Spaces and Underground Ones », in Light, Energy and the Environment (2017), paper RW4A.3, 2017, p. RW4A.3.
M. Mayhoub et D. Carter, « Hybrid lighting systems: Performance and design », Light. Res. Technol., vol. 44, no 3, p. 261‑276, sept. 2012.
J. Schuman, F. Rubinstein, K. Papamichael, L. Beltran, E. Lee, et S. Selkowitz, « Technology Reviews: Daylighting Optical Systems », 1992.
[L. A. Whitehead, R. A. Nodwell, et F. L. Curzon, « New efficient light guide for interior illumination », Appl. Opt., vol. 21, no 15, p. 2755‑2757, août 1982.
O. Dobrre et G. Achard, « Optical simulation of lighting by hollow light pipes », présenté à Ninth International IBPSA Conference, Montréal, Canada, 2005, p. 263‑270.
D. Vazquez-Molini, A. Alvarez, et B. Garcia-Fernandez, « Natural Lighting Systems Based on Dielectric Prismatic Film », in Dielectric Material, M. A. Silaghi, Éd. InTech, 2012.
V. G. Hansen, « Innovative Daylighting Systems For Deep-Plan Commercial Buildings », Thèse Sci., School of Design Queensland University of Technology, 2006.
A. A. Fernandez-Balbuena, Daniel Vazquez-Moliní, Berta García-Fernandez, Lucas García-Rodríguez, et Teresa Galán-Cañestro, « Daylight illumination system by vertical Transparent Prismatic Lightguide for an office building », présenté à Colour and Light in Architecture_First International Conference 2010_Proceedings, 2010, p. 360‑365.
M. S. Mayhoub, « Fifty years of building core sunlighting systems – Eight lessons learned », Sol. Energy, vol. 184, p. 440‑453, mai 2019.
Carter, « Developments in tubular daylight guidance systems », Build. Res. Inf., vol. 32, no 3, p. 220‑234, mai 2004.
L. Audin, « Plasma lighting, fiber optics, and daylight collectors: Toward the next revolution in high-efficiency illumination », Strateg. Plan. Energy Environ., vol. 14, no 4, juin 1995.
S. J. Oh, W. Chun, S. B. Riffat, Y. I. Jeon, S. Dutton, et H. J. Han, « Computational analysis on the enhancement of daylight penetration into dimly lit spaces: Light tube vs. fiber optic dish concentrator », Build. Environ., vol. 59, p. 261‑274, janv. 2013.
J. Callow, « Daylighting Using Tubular Light Guide Systems », University of Nottingham, 2003.
L. Shao et J. M. Callow, « Daylighting performance of optical rods », Sol. Energy, vol. 75, no 6, p. 439‑445, déc. 2003.
G. Oakley, S. . Riffat, et L. Shao, « Daylight performance of lightpipes », Sol. Energy, vol. 69, no 2, p. 89‑98, 2000.
I. Edmonds, « Transmission of mirror light pipes with triangular, rectangular, rhombic and hexagonal cross section », Sol. Energy, vol. 84, no 6, p. 928‑938, juin 2010.
A. C. Oliveira, A. R. Silva, C. F. Afonso, et S. Varga, « Experimental and numerical analysis of natural ventilation with combined light/vent pipes », Appl. Therm. Eng., vol. 21, no 18, p. 1925‑1936, déc. 2001.
S. Varga et A. C. Oliveira, « Ventilation terminals for use with light pipes in buildings: a CFD study », Appl. Therm. Eng., vol. 20, no 18, p. 1743‑1752, déc. 2000.
R. Canziani, F. Peron, et G. Rossi, « Daylight and energy performances of a new type of light pipe », Energy Build., vol. 36, no 11, p. 1163‑1176, nov. 2004.
S. Chirarattananon, S. Chedsiri, et L. Renshen, « Daylighting through light pipes in the tropics », Sol. Energy, vol. 69, no 4, p. 331‑341, 2000.
S. Wittkopf et al., « Ray tracing study for non-imaging daylight collectors », Sol. Energy, vol. 84, no 6, p. 986‑996, juin 2010.
C. Kwok, « A study of horizontal light pipe system for interior daylighting in a dense urban environment », Thesis, The Hong Kong Polytechnic University, 2011.
C. M. Kwok et T. M. Chung, « Computer simulation study of a horizontal light pipe integrated with laser cut panels in a dense urban environment », Light. Res. Technol., vol. 40, no 4, p. 287‑305, déc. 2008.
M. J. Ayers et D. J. Carter, « Remote source electric lighting systems: A review », Light. Res. Technol., vol. 27, no 1, p. 1‑15, mars 1995.
J. Mohelnikova, « Tubular light guide evaluation », Build. Environ., vol. 44, no 10, p. 2193‑2200, oct. 2009.
I. Visa et A. Duta, Nearly Zero Energy Communities: Proceedings of the Conference for Sustainable Energy (CSE) 2017. Springer, 2017.
M. S. Mayhoub, « Innovative daylighting systems’ challenges: A critical study », Energy Build., vol. 80, p. 394–405, 2014.
Malet-Damour B, Bigot D, Guichard S, Boyer H. Photometrical analysis of mirrored light pipe: From state-of-the-art on experimental results (1990–2019) to the proposition of new experimental observations in high solar potential climates. Sol Energy 2019;193:637–53. doi:10.1016/j.solener.2019.09.082.