Intensive Improvement of Cementite Synthesis


  •   Amir Peyman Soleymani

  •   Masoud Panjepour

  •   Mahmood Meratian


Cementite extraordinary mechanical properties have drawn the attention of researchers in recent years. But, the limited methods for the production of this material, led to the production of iron with more than 2.1%wt carbon content beside free carbon by simultaneous thermal-mechanical activation of hematite and graphite mixture at 800°C for 6 hours in the present research. Then, a structure with more than 80%wt cementite was obtained through partial melting process at 1180°C for 25 minutes.

Keywords: Hematite, Carbothermic Reduction, Cementite, Thermal-mechanical activation


T. Terashima, Y., Tomota, M. Isaka, T. Suzuki, M. Umemoto. and Y. Todaka, “Strength and deformation behavior of bulky cementite synthesized by mechanical milling and plasma-sintering,” Scripta materialia, vol. 54, no. 11, pp.1925-1929, Jun. 2006.

J. Zhang, O. Ostrovski, “Cementite Formation and Stability in Iron Carbide Process,” 59th Ironmaking Conference Proceeding, ISS, pp. 339-350, Pittsburgh, 2000.

W.W. Webb and W.D. Forgeng, “Mechanical behavior of microcrystalsLe comportement mecanique de microcristauxMechanisches verhalten von mikrokristallen,” Acta Metallurgica, vol. 6, no. 7, pp. 462-469, Jul. 1958.

A. Kagawa, T. Okamoto, H. Matsumoto, “Young’s modulus and thermal expansion of pure iron-cementite alloy castings,” Acta Metallurgica, vol. 35, no. 4, pp. 797-803, Apr. 1987.

S. Hartmann and H. Ruppersberg, “Thermal expansion of cementite and thermoelastic stresses in white cast iron,” Materials Science and Engineering: A, vol. 190, no. 1-2, pp. 231-239, Jan. 1995.

H. Mizubayashi, S. J. Li, H. Yumoto and M. Shimotomai, “Youngs modulus of single phase cementite,” Scripta Materialia, vol. 40, no. 7, pp. 773-777, Mar. 1999.

E. Q. Masso, and D. Carrasquero, “Fluidized bed process for the production of iron carbide,” U.S. Patent 6 063 155, May 16, 2000.

S. R. K. Nekouei, A. P. Soleymani, and M. Panjepour, “Thermodynamic Study of Cementite Formation in Fe–C–O–H System,” Mineral Processing and Extractive Metallurgy Review, vol. 34, no. 3, pp.176-184, Jan. 2013.

M. Umemoto, Z. G. Liu, H. Takaoka and M. Sawakami, “Production of bulk cementite and its characterization,” Metallurgical and Materials Trans. A, vol. 32, no. 8, pp. 2127-2131, Aug. 2001.

M. Umemoto, Z. G. Liu, K. Masuyama and K. Tsuchiya, “Influence of alloy additions on production and properties of bulk cementite,” Scripta Materialia, vol. 45, no. 4, pp.391-397, Aug. 2001.

M. Ashrafzadeh, A. P. Soleymani, M. Panjepour and M. Shamanian, “Cementite Formation from Hematite–Graphite Mixture by Simultaneous Thermal–Mechanical Activation,” Metallurgical and Materials Trans.: B, vol. 46, no. 2, pp.813-823, Apr. 2015.

A. P. Soleymani, M. Panjepour and M. Meratian, “The Effect of Temperature and Carbon to Hematite Ratio on the Formation of Cementite During the Couple of STMA and Partial Melting Processes,” Metallurgical and Materials Trans.: B, vol. 47, no. 2, pp.846-858, Apr. 2016.

L. D. C. F. Canale, G. E. Totten and R. A. Mesquita, Failure analysis of heat treated steel components, Ohio, USA: ASM international, 2008.

R. Khayyam Nekouei, A. P. Soleymani, S. Akhavan, A. Ashrafi NasrAbadi and A. Aghababaei Samani, “Using Taguchi Method to Optimize Recovery of Bismuth by Electrolysi,”. Journal of Physical Chemistry and Electrochemistry (JPCE), vol. 3, no. 1, pp.39-48, Dec. 2015.


Download data is not yet available.


How to Cite
Soleymani, A.P., Panjepour, M. and Meratian, M. 2020. Intensive Improvement of Cementite Synthesis: A New Method in Presence of Carbothermic Reduction of Hematite. European Journal of Engineering and Technology Research. 5, 2 (Feb. 2020), 218–220. DOI: