Illusions of Elastic Collisions in the Sciences:


  •   Kent W. Mayhew


Employing elastic collisions rather than the reality of inelastic collisions simplifies much of the theoretical sciences. The consequences of such simplification is completely ignored/unrealized by the majority, hence must be addressed. At the crux of the problem is arguably the illusion of elastic collisions in kinetic theory, but this extends to other realms of physics including statistical theory, Lagrangian mechanics and the Navier-Stokes equations.

Keywords: Avogadro's Hypothesis, Ideal Gas Law, Inelastic Collisions, Kinetic Theory, Langrangian Mechanics, Navier-Stokes Equation


Mayhew, K.W. “A new perspective for kinetic theory and heat capacity”, Progress in Physics Vol. 13 (4) 2017 pg 166-173

Mayhew, K.W. “Kinetic theory: Flatlining of Polyatomic Gases”, Progress in Physics Vol. 14 (2) 2018 pg 75-79

Masi J.F., Petkof B., J. Res. Natl. Bur. Stand. 48 (3) (1952)

Scott R.B., Mellors J.W., J. Res. Natl. Bur. Stand. 34 (March 1945)

Prydz R., Goodwin R.D., J. Res. Natl. Bur. Stand. 74A (5) (1970)

Giguere P.A. Heat capacities for water-hydrogen peroxide systems between 25o and 60o C. J. Chem, eng Data 1962 7(4) pp526-527

Chapman S.,Cowling T.G. The mathematical theory of non-uniform gases, third edition. Cambridge University Press 1970

Wu L., White C., Scanlon T.J., Reese J.M. and Zhang Y. A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases. J. Fluid Mechanics (2015) Vol. 763, PP24-50

Enstein A. and Stern O. Einige Argumente Fur die Annahme einer molekularen Agitation beim absolute Nullpunk (Some Arguments for the Assumption of Molecular Agitation at Absolute Zero). Ann. Phys. 40 551: 551-560 (1913)

Dahl J.P. On the Einstein–Stern model of rotational heat capacities. J. of Chem. Physics 109, 10688 (1998)

Thomson W. (1904). Baltimore Lectures. Baltimore: Johns Hopkins University Press. Sec. 27. Re-issued in 1987 by MIT Press as Kelvin's Baltimore Lectures and Modern Theoretical Physics: Historical and Philosophical Perspectives. (Robert Kargon and Peter Achinstein, editors).

Rayleigh J.W.S. (1900). The Law of Partition of Kinetic Energy. Phil. Mag. 49: 98–118.

Pais A. Subtle is the Lord. Oxford University Press. Oxford UK 1982

Hermann Armin (1971). The Genesis of Quantum Theory (1899–1913) (original title: Frühgeschichte der Quantentheorie (1899–1913), translated by Claude W. Nash ed.). Cambridge, M

P. Marmet IEEE Transactions on Plasma Science vol 18 issue 1 (1990)

P. Marmet, Phys. Essays, vol 1, pp 24-32 (1998)

J. M. Jauch and F. Rohlich, The theory of Photons and Electrons. Cambridge, MA:Addison-Wesley,195

H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two electron Atoms. New York: Springer-Verlag, 1957.

Mayhew, K.W. Resolving problematic thermodynamics Hadronic Journal, vol 41, 2018 pg 257-272

Mayhew K.W. Second law and lost work. Phys. Essays, 28, 1 (2015) pp 152-155

Mayhew K. W. Entropy: An ill-conceived mathematical contrivance? Phys. Essays, 28, 3 (2015) pp 352-357

Lanczos, C. “The variations Principles of Mechanics” University of Toronto press 1970.


Download data is not yet available.


How to Cite
Mayhew, K.W. 2020. Illusions of Elastic Collisions in the Sciences:: An Essay. European Journal of Engineering and Technology Research. 5, 1 (Jan. 2020), 87–90. DOI: