Use of Non-Hazardous Solid Waste as Alternative Fuels in Cement Manufacturing Process


  •   Ghizlane Bouabid

  •   Fouzia Byoud

  •   Nisrine Benzbiria

  •   Driss Nahya

  •   Mohammed Azzi


The incineration of non-hazardous solid waste and its use as alternative fuel in cement manufacturing process was studied and simulated under the effect of air flow acceleration in a laboratory scale reactor. Firstly, analysis of the different waste materials (textile, wood and paper) was performed separately, showing that textile samples presented the highest levels of heavy metals (H.M). In the course of a test run using solid recovered fuel (SRF), the mass balance of heavy metals revealed that lead and chromium probably volatilized during firing while arsenic, cadmium and zinc were trapped in clinker. As to gaseous emissions, heavy metals concentration in the stack remained relatively low and below the standard limits. Secondly, the temperature and concentration of gases flue was monitored. It was shown that the combustion regime is characterized by low reaction temperatures and an oxygen-deficient environment. Air injection rate affected significantly the formation and degradation mechanisms of the emitted gases concentrations, particularly CO, CO2, NO, NOx, SO2. Textile waste exhibited the lowest concentration of emitted gases compared to the other types of waste.

Keywords: Cement Kiln, Incineration, Non-Hazardous Solid Waste, Stack Emissions, Mass Balance of Heavy Metals


Incinération des déchets, Document de référence sur les meilleures techniques disponibles, Commission Européenne, Ministère de l’Ecologie de l’Energie, du Développement Durable et de la Mer, France, Août 2006.

J.I. Bhatty, F.M. Miller and S.H. Kosmatka, “Innovations in Portland Cement Manufacturing,” 1st Ed, Ch: 9.5, “Central and South American Standards and Specifications for Cements,” Portland Cement Association (PCA), 2004.

M. Beckmann, M. Pohl, D. Bernhardt and K. Gebauer, “Criteria for solid recovered fuels as a substitute for fossil fuels-a review,” Waste Manag. Res, vol. 30-(4), pp. 354-369, 2012. doi: 10.1177/0734242X12441237.

Engagement sur les dispositions à respecter par les cimenteries marocaines concernant le co-processing, l’élimination des pneus usagés et autres déchets, Association Professionnelle des Cimentiers, Juillet 2008.

A. Aranda-Usón, A.M. López-Sabirón, G. Ferreira and E. Llera-Sastresa, “Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options,” Renewable and Sustainable Energy Reviews, vol. 23, pp. 242–260, 2013.

S. Bicocchi and A. Tenza., “Combustibles Solides de Récupération - Etat Des Lieux Et Perspectives,” Etude RECORD, n° 06-0225/1A, rapport final : cadet international, Janvier 2008.

G.H. Sabin Guendehou, M. Koch, L. Hockstad, R. Pipatti and Masato Yamada, “Lignes directrices du GIEC pour les inventaires nationaux de gaz à effet de serre,” ch 5, “Incinération et combustion à l’air libre des déchets,” 2006.

V. Paternostre, “La co-incinération des déchets dans les cimenteries : pas si verte que ça,” Analyse critique d’Inter Environnement Wallonie, Octobre 2007.

T. Rogaume, M. Auzanneau, F. Jabouille, J.C. Goudeau and J. Torero, “The effects of different air-flows on the formation of pollutants during waste incineration,” Fuel, vol. 81(17), pp. 2277–2288, 2002, doi: 10.1016/S0016-2361(02)00151-5

C. Montejo, C. Costa, P. Ramos and M. del Carmen Marquez, “Analysis and comparison of municipal solid waste and reject fraction as fuels for incineration plants,” Applied Thermal Engineering, vol. 31-13, pp. 2135-2140, 2011. doi: 10.1016/j.applthermaleng.2011.03.041

Guide méthodologique pour la caractérisation des flux de déchets encombrants collectés dans les déchèteries et l'expérimentation du démantèlement d'objets, Rapport Cap3c, ADEME, Juillet 2010.

Caractérisation des déchets-Prélèvement des déchets-Procédure-cadre pour l’élaboration et la mise en œuvre d’un plan d’échantillonnage, NF EN 14899, Avril 2006.

S. Aloueimine, “Méthodologie de caractérisation des déchets ménagers à Nouakchott (Mauritanie) : contribution à la gestion des Déchets et outils d’aide à la décision,” Thesis, Université de Limoges, Faculté des sciences et techniques, 2006.

C. Seyler, S. Hellweg, M. Monteil and K. Hungerbühler, “Life Cycle Inventory for Use of Waste Solvent as Fuel Substitute in the Cement Industry-A Multi-Input Allocation Model,” Int. J. of Life Cycle Assessment, vol. 10-2, pp. 120-130, 2005.

G. Qizhong and J.O. Eckert Jr., “Heavy metal outputs from a cement kiln co-fired with hazardous waste fuels,” J. Haz. Mat., vol. 51(1-3), pp. 47-65, 1996, DOI: 10.1016/S0304-3894(96)01800-6

B. Courtemanche and Y.A. Levendis, “A laboratory study on the NO, NO2, SO2, CO and CO2 emissions from the combustion of pulverized coal, municipal waste plastics and tires,” Fuel, vol. 77-3, pp. 183-196, 1998,

C. Brereton, “Municipal solid waste-incineration, air pollution control and ash management,” Resources, Conservation and Recycling, vol. 16-(1-4), pp. 227-264, 1996,

S.C. Hill and L. Douglas Smoot, “Modelling of nitrogen oxides formation and destruction in combustion systems,” Progress in Energy and Combustion Science, vol. 26(4-6), pp. 417-458, 2000, DOI: 10.1016/S0360-1285(00)00011-3


Download data is not yet available.


How to Cite
Bouabid, G., Byoud, F., Benzbiria, N., Nahya, D. and Azzi, M. 2020. Use of Non-Hazardous Solid Waste as Alternative Fuels in Cement Manufacturing Process: Impact on the Quality of Cement and Gas Emissions. European Journal of Engineering and Technology Research. 5, 1 (Jan. 2020), 1–7. DOI:

Most read articles by the same author(s)