##plugins.themes.bootstrap3.article.main##

This review paper focuses on the description, uses and emission removal functions of a solvent with respect to air pollution control of the flue gases in a combustion chamber exhaust waste stream. The physical characteristics of the solvent required for improved and optimal performance of the absorption system where discussed. The factors affecting performance of the solvent with reference to parametric changes in operations as well as cost consideration schemes required to select the most appropriate solvent for increased performance were also ex-rayed. The choice of a solvent that is cost effective and readily available was recommended in the study. 

Downloads

Download data is not yet available.

References

  1. Cseri, L; Razali, M; Pogany, P. & Szekely, G. (2018): Green Chemistry, An Inclusive Approach. Elsevier Science Publishing Co. Inc. United States, 513-553.
     Google Scholar
  2. Perry, M.J. (2017). Agricultural Health and Safety International Encyclopaedia of Public Health, 2nd Edition. Academic Press, Cambridge Massachusetts, US.
     Google Scholar
  3. Pena-Pereira, F. & Tobiszewski, M. (2017). The Application of Green Solvents in Separation Processes. Elsevier, Amsterdam, Netherlands, 533-545.
     Google Scholar
  4. Eicher, T.J. (2009). Clinical Neurotoxicology-Syndromes, Substances, Environments. Saunders, Philadelphia, US, 675-691.
     Google Scholar
  5. Jafari, M.J., Ghasemi, R., Mehrabi, Y., Yazdanbakhsh, A.R. & Hajibabaei, M. (2012). Influence of liquid and gas flow rates on sulfuric.
     Google Scholar
  6. Katyal, A. And Morrison, R.D. (2008). Introduction to Environmental Forensics, 2nd Edition. Academic Press, Cambridge Massachusetts, US, 513-575.
     Google Scholar
  7. Alshora, D.H.; Ibrahim, M.A. & Alanazi, F.K. (2016). Nanotechnology from Particle Size Reduction to Enhancing Aqueous Solubility. William Andrew, Norwich, New York, US, 163-191.
     Google Scholar
  8. Di, L. & kerns, H. (2016). Drug-Like Properties Concepts, Structure Design and Methods from ADME to Toxicity Optimisation. Academic Press, Cambridge Massachusetts, US, 61-93.
     Google Scholar
  9. Mittal, B. (2017). How to Develop Robust Solid Oral Dosage Forms from Conception to Post Approval. Academic Press, Cambridge Massachusetts, US, 17-37.
     Google Scholar
  10. Habashi, F. (2001): Encyclopedia of Materials: Science and Technology, 2nd Edition. Pergamon Publishers, Oxford, England, 5338-5341.
     Google Scholar
  11. Buckle, J. (2015). Clinical Aromatherapy, 3rd Edition. Churchill Livingstone, London, England, 73-94.
     Google Scholar
  12. Haschek, W.M; Rousseaux, C.G. & Wallig, M.A. (2010). Fundamentals of Toxicology Pathology. Academic Press, Cambridge Massachusetts, US, 451-489.
     Google Scholar
  13. Ardebili, H; Zhang, J. & Pecht, M.G. (2019). Encapsulation Technologies for Electronic Application, 2nd Edition. William Andrew, Norwich, New York, US, 375-429.
     Google Scholar
  14. Fan, M; Naughton, A. & Bregulla, J. (2017). Advanced High Strength Natural Fibre Composites in Construction. Woodhead Publishing, Cambridge, England, 375-404.
     Google Scholar
  15. Felder, R. (2015): Elementary principles of Chemical Processes. John Wiley & Sons, Cambridge, England, 279-281.
     Google Scholar
  16. Katyal, A. And Morrison, R.D. (2007). Introduction to Environmental Forensics, 2nd Edition. Academic Press, Cambridge Massachusetts, US, 513-575.
     Google Scholar
  17. Zhang Z., Zhao S., Rezakazemi M., Chen F., Luis P. & Van der Bruggen B. (2017). Effect of flow and module configuration on SO2 absorption by using membrane contactors. Global NEST Journal, 19(4), 716-725.
     Google Scholar
  18. Demirel, Y. & Gerbaud, V. (2019). Nonequilibrium Thermodynamics, 4th Edition. Elsevier Science Publishing Co. Inc. United States, 87-133.
     Google Scholar
  19. Williams, L. Stapleton, F. & Carnt, N. (2019). Contact Lenses, 6th Edition. Elsevier, Amsterdam, Netherlands, 65-96.
     Google Scholar
  20. Schofield, M.J. (2002). Plant Engineer’s Reference Book, 2nd Edition. Butterworth-Heinemann, Oxford, England, 34(1-33).
     Google Scholar
  21. Darvell, B.W. (2018). Materials Science for Dentistry, 10th Edition. Woodhead Publishing, Cambridge, England, 382-398.
     Google Scholar
  22. Kain, V. (2012). Functional materials – Preparation, Processing and Applications. Elsevier, Amsterdam, Netherlands, 507-547.
     Google Scholar
  23. Plazaa, J.M. & Rochellea, G.T. (2011). Modeling pilot plant results for CO2 capture by aqueous piperazine. Energy Procedia, 4, 1593–1600.
     Google Scholar
  24. Wang, W., Yang, C. & Zhang, J. (2012). Absorption of Sulphur Dioxide from Flue Gas with Sodium Alkali Solution in Packed Columns. Advanced Materials Research, 383, 6409-6415.
     Google Scholar
  25. Chungsiriporn, J., Bunyakan, C. & Nikom, R. (2006). Toluene removal by oxidation reaction in spray wet scrubber: experimental, modeling and optimization. Songklanakarin J. Sci. Technol. 28(6), 1265-1274.
     Google Scholar
  26. Mariana, S., Satake, T., Maezawa, A., Takeshita, T. & Uchida, S. (2009). Gas Absorption by Alkaline Solution in a Cyclone Scrubber: Experimental and Modeling Study. Jurnal Rekayasa Kimia dan Lingkungan, 7(1), 9-14.
     Google Scholar
  27. Zhitao, H., Yu, G., Shaolong, Y., Jingming, D., Xinxiang, P., Tian, L., Liguo, S., et al. (2019). NO Removal from Simulated Diesel Engine Exhaust Gas by Cyclic Scrubbing Using NaClO. Solution in a Rotating Packed Bed Reactor. Hindawi Journal of Chemistry, Article ID 3159524.
     Google Scholar
  28. Krzyżyńska, R., Zhao, Y. & Hutson, N. (2010). Absorption of NOx, SO2, and Mercury in a Simulated Additive-Enhanced Wet Flue Gas Desulphurization Scrubber. Polish J. of Environ. Stud., 19(6), 1255-1262.
     Google Scholar
  29. Waqas, S., Nawaz, M., Tahir, M.U., Murtaza, G. & Jamil, M. (2014). A simulation study on the removal of CO2 and CH4 lost from raw biogas in a packed bed absorption column. International Journal of Scientific & Engineering Research, 5(12).
     Google Scholar
  30. Nair, P.S. & Selvi, P.P. (2014). Absorption of Carbon dioxide in Packed Column. International Journal of Scientific and Research Publications, 4(4).
     Google Scholar
  31. Deshwal, B.R. & Kundu, N. (2015). Simultaneous removal of NO and SO2 from simulated flue gas using Fe (II) EDTA coupled with catalytic regeneration. Euro. J. Appl. Eng. Sci. Res., 4 (2), 10-19.
     Google Scholar
  32. Moiolia, S., Lodia, G., Pellegrinia, L.A. Hob, M.T. & Wiley, D.E. (2018). Amino Acid Based Solvent Vs. Traditional Amine Solvent: a Comparison. Chemical Engineering Transactions, 6.
     Google Scholar
  33. Rosli, A., Ahmad, A.L., Lim, J.K. & Low, S.C. (2017). Advances in liquid absorbents for CO2 capture: A review. Journal of Physical Science, Vol. 28(Supp. 1), 121–144.
     Google Scholar
  34. Oko, E., Wang, M. & Joel, A.S. (2017). Current status and future development of solvent-based carbon capture. Int J Coal Sci Technol, 4(1), 5–14.
     Google Scholar
  35. Roy, P. & Sardar, A. (2015). SO2 Emission Control and Finding a Way Out to Produce Sulphuric Acid from Industrial SO2 Emission. J Chem Eng Process Technol 6(2).
     Google Scholar
  36. Theodore, L. (2008). Air Pollution Control Equipment Calculations. John Wiley & Sons, Inc., Hoboken, New Jersey, US.
     Google Scholar
  37. Zacchello, B., Oko, E., Wang, M. & Fethi, A. (2017). Process simulation and analysis of carbon capture with an aqueous mixture of ionic liquid and monoethanolamine solvent. Int J Coal Sci Technol, 4(1), 25-32.
     Google Scholar
  38. Kettner, H. (1965). The Removal of Sulfur Dioxide from Flue Gases.
     Google Scholar
  39. Bull. Org. mond. Santi, 32, 421-429.
     Google Scholar
  40. Jafarinejad, S (2016). Control and treatment of sulfur compounds specially sulfur oxides (SOx) emissions from the petroleum industry: A review. Chemistry International 2(4), 242-253.
     Google Scholar
  41. Songolzadeh, M., Soleimani, M., Ravanchi,M.T. & Songolzadeh, R. 2014). Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions. Hindawi Scientific World Journal, Article ID 828131.
     Google Scholar