• Erick Gastellóu 
  • G. García 
  • A. M. Herrera 
  • C. Morales 
  • R. García 
  • G. A. Hirata 
  • M. Robles 
  • J. A. Rodríguez 
  • I. E. García 

##plugins.themes.bootstrap3.article.main##

Electronic devices have essential importance in our quality of life. Our species has multiple comforts and benefits obtained by current technology, such as microelectronics, optoelectronics, and nanotechnology. However, few are interested in the different physical phenomena that are behind our technology. This paper presents a brief review of four growth techniques for the obtaining of III-V semiconductors compounds. Techniques such as metalorganic chemical vapor deposition, hot filament chemical vapor deposition, liquid phase epitaxy, and molecular beam epitaxy are described in a simple way to motivate the understanding of the theoretical concepts that make operated our technology.

Downloads

Download data is not yet available.

References

  1. W.F. Brinkman, D.E. Haggan, W.W. Troutman, A history of the invention of the transistor and where it will lead us. IEEE Journal of Solid-State Circuits. (32) (12) (1997) 1858 – 1865. DOI: 10.1109/4.643644
     Google Scholar
  2. O. Ambacher, Growth and applications of group III-nitrides, J. Phys. D Appl. Phys. 31 (1998) 2653–2710. DOI: 10.1088/0022-3727/31/20/001
     Google Scholar
  3. L. Liu, J.H. Edgar, Substrates for gallium nitride epitaxy, Mater. Sci. Eng. R 37 (2002) 61–127. DOI: https://doi.org/10.1016/S0927-796X(02)00008-6
     Google Scholar
  4. Robert F. Davis, Nitrides for electronic and optoelectronic applications, Proc. IEEE 79 (5) (1991) 702–712. DOI: 10.1109/5.90133.
     Google Scholar
  5. H. Amano, et al., The 2018 GaN power electronics roadmap, J. Phys. D Appl. Phys. 51 (2018) 1-48. DOI: https://doi.org/10.1088/1361-6463/aaaf9d.
     Google Scholar
  6. A. Denis, G. Goglio, G. Demazeau, Gallium nitride bulk crystal growth processes: A review, Mater. Sci. Eng. R 50 (2006) 167–194. DOI: https://doi.org/10.1016/j.mser.2005.11.001.
     Google Scholar
  7. H.M. Manasevit, Single-crystal gallium arsenide on insulating substrates. Applied Physics Letters 12(4)(1968) 156 – 159. DOI: https://doi.org/10.1063/1.1651934.
     Google Scholar
  8. J.J. Coleman, Metalorganic chemical vapor deposition for optoelectronic devices. Proceedings of the IEEE 85(11)(1997) 1715 – 1729. DOI: 10.1109/5.649647
     Google Scholar
  9. J.I. Davies, G. Fan, J.O. Williams, Metal-organic Chemical Vapour Deposition (MOCVD) of Compounds Semiconductors, Part 1.- Optimisation of Reactor Design for the Preparation of ZnSe J. Chem. Soc, Faraday Trans. l. 81(1985) 2711 – 2722 DOI:10.1039/F19858102711
     Google Scholar
  10. J.I. Pankove, T.D. Moustakas, Gallium Nitride (GaN) I. Edi. Acamic Press. 1998. USA.
     Google Scholar
  11. H. Vilchis, V.M. Sanchez, R.A. Escobosa, Cubic GaN layers grown by metalorganic chemical vapor deposition on GaN templates obtained by nitridation of GaAs, Thin Solid Films 520 (2012) 5191–5194 DOI: 10.1016/j.tsf.2012.03.123
     Google Scholar
  12. C. Guarneros, V. Sánchez, Magnesium doped GaN grown by MOCVD, Mater. Sci. Eng. B 174 (2010) 263–265. DOI: 10.1016/j.mseb.2010.03.022
     Google Scholar
  13. J.K. Hite, T.J. Anderson, L.E. Luna, J.C. Gallagher, M.A. Mastro, J.A. Freitas, C.R. Eddy Jr., Influence of HVPE substrates on homoepitaxy of GaN grown by MOCVD, J. Cryst. Growth 498 (2018) 352–356. https://doi.org/10.1016/j.jcrysgro.2018.06.032
     Google Scholar
  14. H. Matsumura, H. Umemoto, K. K. Gleason, R.E.I. Schropp, Catalytic chemical vapor deposition, Wiley-vch, Germany 2019.
     Google Scholar
  15. M.G. Astles Liquid Phase Epitaxial Growth of III - V Compound Semiconductor Materials and their Device Applications, Adam Hilger USA 1990. DOI: https://doi.org/10.1002/crat.2170300406
     Google Scholar
  16. A.J. Downs, Chemistry of Aluminum, Gallium, Indium and Thallium, Springer Netherlands 1993.
     Google Scholar
  17. H. Nelson, Liquid-phase epitaxy—its role in crystal growth technology, J. Cryst. Growth 27(1974) 1-5. DOI: https://doi.org/10.1016/S0022-0248(74)80045-X
     Google Scholar
  18. E. Gastellou, Crecimiento y caracterización de películas cuaternarias de AlGaAsSb sobre GaSb por LPE a bajas temperaturas, Tesis de Maestría, CIDS-ICUAP-BUAP, 2000.
     Google Scholar
  19. H.C. Casey JR, M.B. Panish, Heterostructure lasers Part B: Materials and operating characteristics, Academic Press, USA 1978.
     Google Scholar
  20. W.C. Yang, P.Y. Lee, H.Y. Tseng, C.W. Lin, Y.T. Tseng, K.Y. Cheng, Mg incorporation in GaN grown by plasma-assisted molecular beam epitaxy at high temperatures, J.Cryst. Growth 439 (2016) 87–92. DOI: https://doi.org/10.1016/j.jcrysgro.2016.01.011
     Google Scholar
  21. H. Okumura, S. Misawa, S. Yoshida, Epitaxial growth of cubic and hexagonal GaN on GaAs by gas-source molecular-beam epitaxy, Appl. Phys. Lett. 59 (9) (1991) 1058–1060. DOI: https://doi.org/10.1016/0039-6028(92)91086-Q
     Google Scholar
  22. Ch. Ramesh, P. Tyagi, B. Bhattacharyya, S. Husale, K.K. Maurya, M. Senthil Kumar, S.S. Kushvaha, Laser molecular beam epitaxy growth of porous GaN nanocolumn and nanowall network on sapphire (0001) for high responsivity ultraviolet photodetectors, J. Alloys Compd. 770 (2019) 572–581. DOI: https://doi.org/10.1016/j.jallcom.2018.08.149
     Google Scholar
  23. Y. Wu, Y. Wang, K. Sun, A. Aiello, P. Bhattacharya, Z. Mi, Molecular beam epitaxy and characterization of Mg-doped GaN epilayers grown on Si (001) substrate through controlled nanowire coalescence, J. Cryst. Growth 498 (2018) 109–114. DOI: 10.1016/j.jcrysgro.2018.06.008.
     Google Scholar


Most read articles by the same author(s)