Study of the Thermal Comfort of a Building that does not Comply with Construction Standards in Madagascar: Experimentation and Simulation with OMEdit

##plugins.themes.bootstrap3.article.main##

  •   Jaurès Ratsimbazafiharivola

  •   H. T. Rakotondramiarana

Abstract

A very large number of buildings in developing countries are far from complying with the standards of housing. This paper presents the subjective study of the thermal comfort of a building that does not comply with construction standards or thermal regulations, located in Madagascar. Modeling was done using the Modelica tool, especially its BuildSysPro library. In order to minimize the inaccuracies, a step of an experimental adjustment of the developed numerical model was also carried out usingexperimental reference data that were obtained from the temperaturemeasurementsof the studied building elements as well as the wind speed and the received solar radiation flux. It was found that despite the obvious non-compliance with building standards and thermal regulations, the building has an acceptable thermal environment vis-à-vis its occupant.


Keywords: Non-Compliance, Building Standards, Dynamic Simulation, Experimental Model Adjustment

References

A.J. Marsh. “Calculating variations in the distribution of insolation over building surfaces. International “. Conference on Building Envelope Systems and Technologies (ICBEST). Sydney, Australia, 2004

H. Boyer, J.P. Chabriat, P. Grondin,C.Tourrand, J. Brau. “Thermal building simulation and computer generation of nodal models “. Building and Environment Vol. 31, pp. 207–14, 1996

S. Lu, K. Fang, Y. Qi, S. Wei. “Influence of Natural Ventilation on Thermal Comfort in Semi-open Building under Early Summer Climate in the Area of Tropical Island“. Procedia Engineering; Vol.121, pp. 944-951, 2015

G.M. Thiyagarajan, S.R. Kumar “Velocity optimization using computational fluid dynamics as a tool in leed rated building to reduce energy consumption“. Journal of Chemical and Pharmaceutical Sciences.pp. 142-145, 2015

W. Schwarz, T. Marchal. “Innovation in Building Design through Engineering Simulation“. ANSYS, Inc., 2009

P.T. Bhaskoro, S.I. Gilani, M.S. Aris. “Simulation of energy saving potential of a centralized HVAC system in an academic building using adaptive cooling technique“. Energy Conversion and Management. Vol.75, pp. 617–628, 2013

M. Gustafsson, G. Dermentzis, JA. Myhren, C. Bales, F. Ochs, S. Holmberg, W. Feist. “Energy performance comparison of three innovative HVAC systems for renovation through dynamic simulation“. Energy and Buildings. Vol.82, pp. 512–519, 2014

G. Hao., K. Christian., W. Yupeng. “Building information modelingbased building energy modeling“. A review. Applied Energy. Vol. 238 (15) , pp. 320-343, 2019

B. Mayank, M. Jyotirmay, G. Vishal. “Development of reference building models for India“. Journal of Building Engineering, Vol. 21, pp. 267-277, 2019

O. Olufolahan, O. Michael. “Building performance modelling for sustainable building design“. International Journal of Sustainable Built Environment, Vol. 5(2) , pp. 461-469, 2016

C. Zhenghua, J. Chaoyang. “Building occupancy modeling using generative adversarial network“. Energy and Buildings. Vol. 174, pp. 372-379, 2018

F.E. Cellier“Continuous System Modeling“.Springer-Verlag, 1991

J.A. Rajaonarivelo.“Réalisation d’un code de calcul de simulation thermique, aéraulique et hydrique de l’habitat à Madagascar“. Thèse de doctorat 3è cycle, Faculté des Sciences de l’Université d’Antananarivo, 2002

JUDKOFF. “Building Energy Simulation Test (BESTEST) and Diagnostic Method“,1995

J. NOEL, J.J. ROUX, P.S. SCHNEIDER. “CodyBa, a design tool for buildings performance simulation“.

A. G. Duta, J.J. Roux, J. X. Noël. “Codyba-v.6: New version of software for building dynamical behaviour simulation“, 1994.

A. Brun, C. Spitz, E. Wurtz, L. Mora. “Behavioral comparison of some predictive tools used in a low-energy building“.Eleventh International IBPSA Conference, Glasgow, Scotland, 2010

J. NOEL.“KoZibu, Dossier des Algorithmes“, JNLOG Report 0901, 2009

H. Boyer, A. Bastide, P. Lauret. “Codyrun, outil de simulation et d’aide à la conception thermo-aéraulique de bâtiments“.

H. Boyer, J.P. Chabiat, P. Grondin., C. Tourrand, J. Brau. “Thermal building simulation and computer generation of nodal models“. Building and Environment, Vol. 31(3) , pp. 207-214, 1996

H. Boyer, A. H. Fakra, F. Miranville, B. Malet-Damour, S. Guichard, P. Lauret. “Evolution of CodyRun from thermal simulation to coupled thermal and daylight simulation software“. Energy Procedia, 2014

F. Lucas, T. Mara, F. Garde, H. Boyer. “A comparison between codyrun and trnsys, simulation models for thermal building behavior“, 2012

US DOE. EnergyPlus engineering reference: “The reference to energy plus calculation. Technical report“. US Department of Energy.

Crawley, B. Drury; Lawrie, K. Linda; Winkelmann, C. Frederick; W.F. Buhl; Y. Huang; O. Pedersen; Strand, K. Richard; Liesen, J. Richard; Fisher, E. Daniel; Witte, J. Michael & Glazer, Jason. “EnergyPlus: creating a new-generation building energy simulation program“. Energy and buildings, Vol.33 (4) , pp. 319-331, 2001

DesignBuilder version 1.9.0.003BETA.www.designbuildersoftware.com

A. Fiksel, J. Thornton, S. Klein, W.Beckman. “Developments to the trnsys simulation program. Journal of Solar“ Energy Engineering, Vol.117 (2) , pp. 123-127, 1995

ANSYS-“Fluent, Theory Guide“.

“MATLAB, High-performance numeric computation and visualization software“. The MathWorks

Plateforme Maison Passive asbl. “Vade-Mecum PHPP 2012 (tertiaire) “, 2009

M. Bartak, I. Beausoleil-Morrison, J. A. Clarke, J. Denev, F. Drkal, M. Lain, I. A. MacDonald, A. Melikov, Z. Popiolek, P. Stankov.“Integrating cfd and building simulation“. Building and Environment, Vol.37 (8–9) , pp. 865-871, 2002

“Modelica and the Modelica Association“. https://www.modelica.org/

P. Fritzson. “Principles of object-oriented modeling and simulation with Modelica 2.1“. John Wiley & Sons, 2010

K.J. Aström, H. Elmqvist, S.E. Mattsson. “Evolution of Continuous-Time Modeling and Simulation“. In R. Zobel and D. Moeller (eds.), Proceedings of the 12th European Simulation Multiconference, ESM.’Vol.98, pp. 9-18, 1998

G. Plessis; Kaemmerlen, Aurélie& Lindsay, Amy. “BuildSysPro: a Modelica library for modeling buildings and energy systems“. Proceedings of the 10th International Modelica Conference, pp. 1161–1169, 2014

P. Fritzson, P. Aronsson, P. Bunus, V. Engelson, L. Saldami, H. Johansson, A. Karström. “The Open Source Modelica Project“. In Proceedings of the 2nd International Modelica Conference. Munich, Germany, 2002

M. Ezzraimi. “Recalage (ajustement) des modèles de simulation (numériques) pour se substituer aux modèles expérimentaux“.2013

K. Modeste, Nematchoua. “A study on outdoor environment and climate change effects in Madagascar“. Journal of Buildings and Sustainability. Vol.1 (1), 2017

O. Rakoto-Joseph et al. “Development of climatic zones and passive solar design in Madagascar“. EnergyConversion and Management. Vol.50, pp. 1004-1010, 2009

D. Dear, Brager. Ashrae Journal, 2000

Norme ISO 7243, 2002

G. Donque. “Geographical contribution in the study of climate in Madagascar“. Printing of Graphic Arts. Tananarive, 1975

J.P. Lacaux, Y.M., Tourre, C.Vignolles, J.A. Ndione, M.Lafaye. “Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal“. Remote Sensing of Environment. Vol.106, pp. 66-74, 2006.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Ratsimbazafiharivola, J. and Rakotondramiarana, H.T. 2019. Study of the Thermal Comfort of a Building that does not Comply with Construction Standards in Madagascar: Experimentation and Simulation with OMEdit. European Journal of Engineering and Technology Research. 4, 4 (Apr. 2019), 124–130. DOI:https://doi.org/10.24018/ejeng.2019.4.4.1235.