Study of the Thermal Comfort of a Building that does not Comply with Construction Standards in Madagascar: Experimentation and Simulation with OMEdit
##plugins.themes.bootstrap3.article.main##
A very large number of buildings in developing countries are far from complying with the standards of housing. This paper presents the subjective study of the thermal comfort of a building that does not comply with construction standards or thermal regulations, located in Madagascar. Modeling was done using the Modelica tool, especially its BuildSysPro library. In order to minimize the inaccuracies, a step of an experimental adjustment of the developed numerical model was also carried out usingexperimental reference data that were obtained from the temperaturemeasurementsof the studied building elements as well as the wind speed and the received solar radiation flux. It was found that despite the obvious non-compliance with building standards and thermal regulations, the building has an acceptable thermal environment vis-à-vis its occupant.
Downloads
References
-
A.J. Marsh. “Calculating variations in the distribution of insolation over building surfaces. International “. Conference on Building Envelope Systems and Technologies (ICBEST). Sydney, Australia, 2004
Google Scholar
1
-
H. Boyer, J.P. Chabriat, P. Grondin,C.Tourrand, J. Brau. “Thermal building simulation and computer generation of nodal models “. Building and Environment Vol. 31, pp. 207–14, 1996
Google Scholar
2
-
S. Lu, K. Fang, Y. Qi, S. Wei. “Influence of Natural Ventilation on Thermal Comfort in Semi-open Building under Early Summer Climate in the Area of Tropical Island“. Procedia Engineering; Vol.121, pp. 944-951, 2015
Google Scholar
3
-
G.M. Thiyagarajan, S.R. Kumar “Velocity optimization using computational fluid dynamics as a tool in leed rated building to reduce energy consumption“. Journal of Chemical and Pharmaceutical Sciences.pp. 142-145, 2015
Google Scholar
4
-
W. Schwarz, T. Marchal. “Innovation in Building Design through Engineering Simulation“. ANSYS, Inc., 2009
Google Scholar
5
-
P.T. Bhaskoro, S.I. Gilani, M.S. Aris. “Simulation of energy saving potential of a centralized HVAC system in an academic building using adaptive cooling technique“. Energy Conversion and Management. Vol.75, pp. 617–628, 2013
Google Scholar
6
-
M. Gustafsson, G. Dermentzis, JA. Myhren, C. Bales, F. Ochs, S. Holmberg, W. Feist. “Energy performance comparison of three innovative HVAC systems for renovation through dynamic simulation“. Energy and Buildings. Vol.82, pp. 512–519, 2014
Google Scholar
7
-
G. Hao., K. Christian., W. Yupeng. “Building information modelingbased building energy modeling“. A review. Applied Energy. Vol. 238 (15) , pp. 320-343, 2019
Google Scholar
8
-
B. Mayank, M. Jyotirmay, G. Vishal. “Development of reference building models for India“. Journal of Building Engineering, Vol. 21, pp. 267-277, 2019
Google Scholar
9
-
O. Olufolahan, O. Michael. “Building performance modelling for sustainable building design“. International Journal of Sustainable Built Environment, Vol. 5(2) , pp. 461-469, 2016
Google Scholar
10
-
C. Zhenghua, J. Chaoyang. “Building occupancy modeling using generative adversarial network“. Energy and Buildings. Vol. 174, pp. 372-379, 2018
Google Scholar
11
-
F.E. Cellier“Continuous System Modeling“.Springer-Verlag, 1991
Google Scholar
12
-
J.A. Rajaonarivelo.“Réalisation d’un code de calcul de simulation thermique, aéraulique et hydrique de l’habitat à Madagascar“. Thèse de doctorat 3è cycle, Faculté des Sciences de l’Université d’Antananarivo, 2002
Google Scholar
13
-
JUDKOFF. “Building Energy Simulation Test (BESTEST) and Diagnostic Method“,1995
Google Scholar
14
-
J. NOEL, J.J. ROUX, P.S. SCHNEIDER. “CodyBa, a design tool for buildings performance simulation“.
Google Scholar
15
-
A. G. Duta, J.J. Roux, J. X. Noël. “Codyba-v.6: New version of software for building dynamical behaviour simulation“, 1994.
Google Scholar
16
-
A. Brun, C. Spitz, E. Wurtz, L. Mora. “Behavioral comparison of some predictive tools used in a low-energy building“.Eleventh International IBPSA Conference, Glasgow, Scotland, 2010
Google Scholar
17
-
J. NOEL.“KoZibu, Dossier des Algorithmes“, JNLOG Report 0901, 2009
Google Scholar
18
-
H. Boyer, A. Bastide, P. Lauret. “Codyrun, outil de simulation et d’aide à la conception thermo-aéraulique de bâtiments“.
Google Scholar
19
-
H. Boyer, J.P. Chabiat, P. Grondin., C. Tourrand, J. Brau. “Thermal building simulation and computer generation of nodal models“. Building and Environment, Vol. 31(3) , pp. 207-214, 1996
Google Scholar
20
-
H. Boyer, A. H. Fakra, F. Miranville, B. Malet-Damour, S. Guichard, P. Lauret. “Evolution of CodyRun from thermal simulation to coupled thermal and daylight simulation software“. Energy Procedia, 2014
Google Scholar
21
-
F. Lucas, T. Mara, F. Garde, H. Boyer. “A comparison between codyrun and trnsys, simulation models for thermal building behavior“, 2012
Google Scholar
22
-
US DOE. EnergyPlus engineering reference: “The reference to energy plus calculation. Technical report“. US Department of Energy.
Google Scholar
23
-
Crawley, B. Drury; Lawrie, K. Linda; Winkelmann, C. Frederick; W.F. Buhl; Y. Huang; O. Pedersen; Strand, K. Richard; Liesen, J. Richard; Fisher, E. Daniel; Witte, J. Michael & Glazer, Jason. “EnergyPlus: creating a new-generation building energy simulation program“. Energy and buildings, Vol.33 (4) , pp. 319-331, 2001
Google Scholar
24
-
DesignBuilder version 1.9.0.003BETA.www.designbuildersoftware.com
Google Scholar
25
-
A. Fiksel, J. Thornton, S. Klein, W.Beckman. “Developments to the trnsys simulation program. Journal of Solar“ Energy Engineering, Vol.117 (2) , pp. 123-127, 1995
Google Scholar
26
-
ANSYS-“Fluent, Theory Guide“.
Google Scholar
27
-
“MATLAB, High-performance numeric computation and visualization software“. The MathWorks
Google Scholar
28
-
Plateforme Maison Passive asbl. “Vade-Mecum PHPP 2012 (tertiaire) “, 2009
Google Scholar
29
-
M. Bartak, I. Beausoleil-Morrison, J. A. Clarke, J. Denev, F. Drkal, M. Lain, I. A. MacDonald, A. Melikov, Z. Popiolek, P. Stankov.“Integrating cfd and building simulation“. Building and Environment, Vol.37 (8–9) , pp. 865-871, 2002
Google Scholar
30
-
“Modelica and the Modelica Association“. https://www.modelica.org/
Google Scholar
31
-
P. Fritzson. “Principles of object-oriented modeling and simulation with Modelica 2.1“. John Wiley & Sons, 2010
Google Scholar
32
-
K.J. Aström, H. Elmqvist, S.E. Mattsson. “Evolution of Continuous-Time Modeling and Simulation“. In R. Zobel and D. Moeller (eds.), Proceedings of the 12th European Simulation Multiconference, ESM.’Vol.98, pp. 9-18, 1998
Google Scholar
33
-
G. Plessis; Kaemmerlen, Aurélie& Lindsay, Amy. “BuildSysPro: a Modelica library for modeling buildings and energy systems“. Proceedings of the 10th International Modelica Conference, pp. 1161–1169, 2014
Google Scholar
34
-
P. Fritzson, P. Aronsson, P. Bunus, V. Engelson, L. Saldami, H. Johansson, A. Karström. “The Open Source Modelica Project“. In Proceedings of the 2nd International Modelica Conference. Munich, Germany, 2002
Google Scholar
35
-
M. Ezzraimi. “Recalage (ajustement) des modèles de simulation (numériques) pour se substituer aux modèles expérimentaux“.2013
Google Scholar
36
-
K. Modeste, Nematchoua. “A study on outdoor environment and climate change effects in Madagascar“. Journal of Buildings and Sustainability. Vol.1 (1), 2017
Google Scholar
37
-
O. Rakoto-Joseph et al. “Development of climatic zones and passive solar design in Madagascar“. EnergyConversion and Management. Vol.50, pp. 1004-1010, 2009
Google Scholar
38
-
D. Dear, Brager. Ashrae Journal, 2000
Google Scholar
39
-
Norme ISO 7243, 2002
Google Scholar
40
-
G. Donque. “Geographical contribution in the study of climate in Madagascar“. Printing of Graphic Arts. Tananarive, 1975
Google Scholar
41
-
J.P. Lacaux, Y.M., Tourre, C.Vignolles, J.A. Ndione, M.Lafaye. “Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal“. Remote Sensing of Environment. Vol.106, pp. 66-74, 2006.
Google Scholar
42