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ABSTRACT

The creeping flow of an incompressible, bounded micropolar fluid past
a porous shell is investigated. The porous shell is modeled using a Darcy
equation, sandwiched between a pair of transition Brinkman regions.
Analytical expressions for the stream function, pressure, and microrotations
are given for each region. Streamline patterns are presented for variations
in hydraulic resistivity, micropolar constants, porous layer thickness, and
Ochoa-Tapia stress jump coefficient. An expression for the dimensionless
drag for the unbounded case of the system is presented, and its variation
with hydraulic resistivity and porous shell thickness is presented. The
unbounded case represents a theoretical model for oral drug delivery using
porous microspheres. It was found that optimal circulation between the
porous region and the outer fluid occurred for low values of hydraulic
resistivity and for a complete porous sphere.
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1. Introduction

Controlled release drug delivery employs drug-
encapsulating devices from which therapeutic agents
may be released at controlled rates for long periods
of time, ranging from days to months. Such systems
offer numerous advantages over traditional methods of
drug delivery, including tailoring of drug release rates,
protection of fragile drugs, and increased patient comfort
and compliance. Porous microspheres are ideal vehicles for
many controlled delivery applications due to their ability
to encapsulate a variety of drugs, biocompatibility, high
bioavailability, and sustained drug release characteristics.
The types of microspheres used in controlled drug delivery
include Bioadhesive, Magnetic, Floating, Radioactive, and
Polymeric Microspheres.

Considerable work has been carried out on micropolar
fluids since the introduction of its theory [1]. Microp-
olar fluids represent fluids consisting of rigid, randomly
oriented bar-like elements or dumbbell-shaped molecules.
Each volume element has microrotation about its centroid,
in addition to its translatory motion in an average sense.
Micropolar fluids exhibit some microscopic effects arising
from the local structure and micromotion of the fluid
elements, and they can sustain a couple of stresses. Animal

blood, liquid crystals, and certain polymeric fluids are a
few examples of fluids that may be represented by the
mathematical model of micropolar fluids.

Rao and Rao [2] discussed the creeping flow of microp-
olar fluid past a sphere. A more general result for Stokes
flow in a micropolar fluid in the case of axisymmetric
bodies has been given by Ramkissoon and Majumdar [3];
they presented an expression for the drag and applied it to
the specific case of a sphere.

Bhatt [4] examined the creeping flow of a micropolar
fluid produced by the relative motion of solid sphere and
an inner porous sphere. His work extends Cunningham [5]
work to micropolar fluids with a porous inner sphere. He
obtained an expression for the force exerted on the inner
porous sphere using stream functions.

Srinivasacharya and Rajyalakshmi [6] investigated
creeping flow of an incompressible micropolar fluid
past a porous sphere in an unbounded fluid. They used
Brinkmans equation for the porous region. The boundary
conditions used were the continuity of velocity, pressure,
and tangential stresses across the fluid, porous region
interface. They implemented a no-spin condition for the
microrotation components in both regions. They presented
stream function and pressure expressions for the different
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regions and also gave an expression for the drag on the
sphere.

Saad [7] considered the creeping asymmetric transla-
tional motion of a spheroid particle in an unbounded
micropolar fluid. He also considered the motion of a
spheroidal particle at the instant it passes the center of
a spherical envelope filled with a micropolar fluid. He
presented analytical expressions for the stream function
and microrotation components obtained to first order in
the small parameter characterizing the deformation. He
also presented drag expressions for both the unbounded
fluid and spherical envelope case.

Hoffmann et al. [8] investigated Stokes formula for
the drag on a sphere moving with constant velocity in a
micropolar fluid. A non-homogeneous boundary condi-
tion for the microrotation vector is used. They compare
their expression for the drag with other authors.

Goharzadeh et al. [9] experimentally looked at the flow
in the vicinity of a permeable interface using Particle Image
Velocimetry (PIV) and Refractive Index Matching (RIM).
They found from observing the average velocity profile
that the horizontal velocity profile decreases continuously
when moving downward from the fluid into the porous
layer. Their experimental data indicates the existence of
a transition layer, which is characterized by a drastic
decrease in velocity. The length scale of the transition layer
was found to be of the order of the grain diameter of
the porous particle and much larger than the square root
of the permeability, as was originally suggested by Neale
and Nader [10]. They stated that a Brinkman transition
layer would have a drastic decrease in fluid particle velocity
and that the fluid particles then attain an average constant
velocity in the porous region as predicted by the Darcy
equation.

Stability analysis has also been performed on a porous
medium modeled as a transition Brinkman layer overlying
a Darcy layer. Hill and Straughan [11] examined a three
(3) layer configuration comprising a clear fluid overlying a
transition Brinkman layer, which in turn overlies a Darcy
porous layer. These three (3) layers configuration was used
to numerically investigate the instability of Poiseuille flow.
They found two (2) modes of instability corresponding to
the fluid and porous layers, respectively. They found that
the stability characteristics of the system are influenced by
the depth ratio between the porous and fluid layers and the
transition layer depth.

The intent of the problem is to investigate the
hydrodynamics associated with a porous polymer cell,
geometrically modeled as a porous microsphere, that is
orally administered as a drug carrier for a sustained drug
delivery system to treat colon cancer. A porous spherical
shell is used to generalize the geometry, and micropolar
fluid is used to model the complex Non-Newtonian fluid
present in the colon. Creeping axisymmetric flow of an
incompressible micropolar fluid past a porous shell is
considered. The porous region is modeled using Darcy
equation sandwiched between two transition Brinkman
regions. A stream function formulation is used to solve the
system. The accompanying boundary conditions used are
continuity of velocity, normal and tangential stresses, and
non homogeneous microrotations across the fluid porous

region interfaces. At the Brinkman- Darcy interfaces, con-
tinuity of velocity, normal stresses, microrotations, and
the Beavers and Joseph condition are implemented. Plots
of the stream functions as they vary with hydraulic resis-
tivity, micropolar coupling parameter, tangential stress
jump parameter, and the thickness of the porous shell
are presented and discussed. An analytical expression
for the dimensionless drag, in the unbounded fluid case,
is derived, and plots of the dimensionless drag as it
varies with hydraulic resistivity and porous layer thickness
are presented. The results presented by Ramkissoon and
Majumdar [3] are also recovered from the model.

2. Model Formulation

We consider the case of a steady, creeping, axisymmetric,
incompressible micropolar fluid flow past a porous shell.
(r, θ , φ) denote the spherical polar coordinate system, with
the corresponding unit base vectors

( �er, �eθ , �eφ

)
with scale

factors (h1, h2, h3) = (1, r, rsin θ).
The ambient velocity V defined at a finite radius r =

re is upward and parallel to the polar z-axis. The porous
shell has internal radius r = b and external radius r = a.
The porous regions, in Fig. 1, is modeled as two transition
Brinkman layers separated by a Darcy region. The thick-
ness of the transition Brinkman layers ε, is given [6]:

ε = 0.1
(

1 − b
a

)
(1)

The velocity vector �q(i) and micro rotation vector �ω(i)

associated with the micropolar fluid flow is given by:

�q(i) =
⎛
⎝q(i)

r (r, θ)

q(i)
θ (r, θ)

0

⎞
⎠ and �ω(i) =

⎛
⎝ 0

0
ω

(i)
φ (r, θ)

⎞
⎠ (2)

Fig. 1. Different regions: Region I—Outer fluid region, Region
III—Inner fluid region, Region II—Darcy region, Region B1

and B2—Brinkman regions.
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For axisymmetric flow, Stokes Stream functions Ψ(i) in
spherical polar coordinates is given for i = 1, 2, 3, b1 and
b2:

q(i)
r = − 1

r2 sin θ

∂

∂θ
Ψ(i) and q(i)

θ = 1
rsin θ

∂

∂r
Ψ(i)(3)

2.1. Region I and Region III

Region I consists of micropolar fluid outside the porous
sphere, and Region III consists of micropolar fluid inside
the inner radius of the shell, 0 ≤ r ≤ b. The governing
equations for a steady flow of an incompressible microp-
olar fluid under Stokesian assumption in the absence of
body force and body coupling is given by Srinivasacharya
and Rajyalakshmi [12]. For i = 1 and 3:

∇ · �q(i) = 0

−∇p(i) − (μ + κ)
(∇ × ∇ × �q(i)

) + κ∇ × �ω(i) = 0

−2κ �ω(i) + κ∇ × �q(i) − γ∇ × ∇ × �ω(i)

+ (αm + βm + γ )∇ (∇ · �ω(i)
) = 0

(4)

where −→q (i) is the velocity vectors, p(i) is fluid pressure,−→w (i) is microrotation vector, μ, κ , γ , αm and βm is
micropolar constants.

The micropolar constants κ, γ , αm and βm satisfy the
following inequalities:

2μ + κ ≥ 0, κ ≥ 0, 3αm + βm + γ ≥ 0 and γ ≥ |βm| (5)

2.2. Region B1 and B2

Region B1, a − ε ≤ r ≤ a and Region B2, b ≤ r ≤
b + ε are both modeled as a thin transitional Brinkman
porous layer of thickness ε, where ε = 0.1 (1 − b/a) [6].
The governing equations are given by Srinivasacharya and
Rajyalakshmi [13]. For i = b1 and b2:

∇ · �q(i) = 0

μ

k
�q(i) + ∇p(i) − κ∇ × �ω(i) + (μ + κ)

(∇ × ∇ × �q(i)) = 0

−2κ �ω(i) + κ∇ × �q(i) − γ∇ × ∇ × �ω(i)

+ (αm + βm + γ )∇ (∇ · �ω(i)
) = 0

(6)

2.3. Region II

Region II, b + ε ≤ r ≤ a − ε is modeled as a
Darcy porous region. The governing equations are given
by Sharma and Gupta [14]:

∇ · �q(2) = 0

1
k
(μ + κ)�q(2) + κ∇ × ω(2) = ∇p(2)

−2κω(2) + κ∇ × �q(2) − γ∇ × (∇ × ω(2)
)

+(α + β + γ )∇ (∇ · ω(2)
) = 0

(7)

2.4. Dimensionless Form of the Governing Equations

A dimensionless analysis is performed on the governing
equations for all the regions. The dimensionless variables

ψ(i), p(i)∗, r∗, ω∗(i)
φ , q(i)∗

r∗ , q(i)∗
θ and α2 are defined as follows:

Ψ(i) = a2Vψ(i), p(i) = μ

a
Vp(i)∗, r = ar∗,

ω
(i)
φ (r, θ) = V

a
ω

∗(i)
φ (r, θ)

q(i)
r = Vq(i)∗

r∗ , q(i)
θ = Vq(i)∗

θ and α2 = a2

k

(8)

where α2 is the hydraulic resistivity of the brinkman porous
region and i is 1 and 3.

The dimensionless variables are substituted into the gov-
erning equations and for simplicity, the superscript (∗) is
removed.

The governing equations in dimensionless form for the
various regions are given by Region I and III (i = 1 and 3):

1
2

(
E2ψ(i) + 2 − N

Nm2
E4ψ(i)

)
= rsin θω

(i)
φ

E4
(
E2 − m2

)
ψ(i) = 0

(9)

Region B1 and B2 (i = b1 and b2):

ω
(i)
φ = 1

2rsinθ
E2ψ(i)

+ 1
2rsinθ

(
2 − N

m2

)
E2

(
rsinθω

(i)
φ

)
0 = E2

(
E2 − χ2

) (
E2 − 2

)
ψ(i)

(10)

Region II:

rsinθω
(2)
φ = −1

2

(
1 + α2

(
2 − N
Nm2

))
E2ψ(2)

E4ψ(2) −
(

2α2m2

α2(2 − N) + Nm2

)
E2ψ(2) = 0

(11)

where

2 = 1
2

(
α2(1 − N) + m2)

+α

2

√
α2

(
(1 − N) + m2

α2

)2

− 8m2(1 − N)

2 − N

χ2 = 2m2α2(1 − N)

(2 − N)2

E2 = ∂2

∂r2
+ 1

r2

∂2

∂θ2
− cot θ

r2

∂

∂θ

(12)

3. Solutions for the Different Regions

Solutions for Regions I and III, as well as regions B1 and
B2, are given by Srinivasacharya and Rajyalakshmi [13] as:
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ψ(i) =
[

A(i)r2 + B(i)

r
+ C(i)r4 + D(i)r + E(i)√rK 3

2
(mr)

+F (i)√rI 3
2
(mr)

] sin2
θ

2

ω
(i)
φ = sin θ

2N

(
m2√rF (i)I 3

2
(mr) + m2√rE(i)K 3

2
(mr)

+5NC(i)r − N
r2

D(i)
)

(13)

where i = 1 and 3 and

ψ(i) =
[

A(i)r2 + B(i)

r
+ C(i)√rK 3

2
(χr)

+D(i)√rI 3
2
(χr) + E(i)√rK 3

2
(r)

+F (i)√rI 3
2
(r)

] sin2
θ

2

ω
(i)
φ = − sin θ

4Nm2r
9
2

(
C̃

(
C(i)) + D̃

(
D(i))

+Ẽ
(
E(i)

) + F̃
(
F (i)

))

(14)

where i = b1 and b2 and:

C̃ = r4χ2
(
(N − 2) χ2 + α2 (N − 2) (N − 1)

−Nm2
)

K 3
2
(χr)

D̃ = rχ2
(
(N − 2) χ2 + α2 (N − 2) (N − 1)

−Nm2
)

I 3
2
(χr)

Ẽ = r2
(
(N − 2) χ2 + α2 (N − 2) (N − 1)

−Nm2
)

K 3
2
(r)

F̃ = r42
(
(N − 2) χ2 + α2 (N − 2) (N − 1)

−Nm2
)

I 3
2
(r)

(15)

Following the analysis given by Happel and Brenner [5],
the solutions for Region II is given by:

ψ(2) =
(

A(2)r2 + B(2)

r
+ E(2)

√
rY 3

2
(mdr)

+F (2)
√

rJ 3
2
(mdr)

) sin2
θ

2

ω
(2)
φ = −

(
α2(N − 2) − Nm2

)
m2

d

4Nm2

(
sin θ

r
1
2

)

×
(

E(2)Y 3
2
(mdr) + F (2)J 3

2
(mdr)

)

(16)

where

m2
d =

(
2α2m2

α2(2 − N) + Nm2

)
(17)

where K3/2(mr)-modified Bessels function of the first kind
of order 3/2, I3/2(mr)-modified Bessels function of the
second kind of order 3/2, Y3/2 (mdr)-Bessels function of
the second kind of order 3/2, J3/2 (mdr)-Bessels function
of the first kind of order 3/2, and A(i), B(i), C(i), D(i), E(i)

and F (i) represents the constants for the different regions,
specified by the superscript (i).

3.1. Dimensionless Boundary Conditions

The following dimensionless boundary conditions are
used to obtain the twenty-five (25) total constants present
in the general solutions for all the regions:

1. The radial velocity q(3)
r and tangential velocity q(3)

θ

are finite at r = 0.
2. The radial and tangential velocity fields are

defined at r = re

a
:

q(1)
r = cos θ and q(1)

θ = − sin θ

3. The microrotations ω(i) is equal to the vorticity of

the micropolar fluid at r = re

a
, r = 1 and r = r3 =

b/a:
ω(i) = α2∇ × �q(1) where 0 ≤ α2 ≤ 1 and i = 1, 3

and b1.
4. Continuity of both radial qr and tangential qθ

velocity components at r = 1, r = r1 = 1 − ε, r =
r2 = b/a + ε and r = r3 = b/a.
5. Continuity of normal stresses at r = 1, r = r1 =
1 − ε, r = r2 = b/a + ε and r = r3 = b/a.
6. Ochoa-Tapia jump in tangential Stress Jump con-
dition at r = 1 and r = r3 = b/a.
7. The micro-rotations ω(i) are equal at r = r1 = 1−ε

and r = r2 = b/a + ε.
8. Beavers and Joseph boundary condition at r =
r1 = 1 − ε and r = r2 = b/a + ε.

The solutions for the different regions given by (15)–(20),
along with the dimensionless boundary conditions above,
are used to obtain the constants and uniquely solve the
system.

4. Results

4.1. Streamline Patterns

The streamline patterns are displayed in spherical polar
coordinates (r and φ) with the outline of the porous shell
in red. The direction of the velocity V is upwards.

4.1.1. Streamline Patterns for Varying Hydraulic Resis-
tivity α

• Streamline patterns for varying hydralic resistivity
Fig. 2.

• Streamline patterns for varying porous lauer thick-
ness Fig. 3.

4.1.2. Streamline Patterns for Varying Porous Layer
Thickness εp

4.2. Drag for the Unbounded Fluid Case

For unbounded micropolar fluid flow past a porous
shell the boundary conditions remain the same as for
the bounded system, except that the three (3) boundary
conditions at r = re are now excluded.

The stream function ψ̂(1) corresponding to the
unbounded case is given by:

ψ̂(1) =
(

r2 + B̂(1)

r
+ D̂(1)r + Ê(1)

√
rK 3

2
(mr)

)
sin2

θ

2
(18)
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Fig. 2. Streamline patterns for varying α: (a) α = 5 and (b) α = 7, b/a = 0.6, αj = 1.45, β = 1/2, N = 0.5 and m = 20.

Fig. 3. Streamline patterns for: (a) εp = 0.7, α = 2, b/a = 0.6, αj = 1.45, β = 0.5, m = 20 and N = 0.5, (b) εp = 0.99, α = 2, b/a = 0.6, αj =
1.45, β = 0.5, m = 20 and N = 0.5.

The corresponding expressions for the pressure p̂(1) and

microrotation ω̂(1) are given by:

ω̂(1) = − sin θ

2

⎛
⎝ D̂(1)

r2
−

Ê(1)m2K 3
2
(mr)

N
√

r

⎞
⎠

p̂(1) = − (N − 2)

2(N − 1)

(
D̂(1)

r2

)
cos θ

(19)

where B̂(1), D̂(1) and Ê(1) are constants for the unbounded

system of equations.

The drag formula for a sphere in a micropolar fluid is
given by Ramkissoon and Majumdar [10]. In dimension-
less form, it is given by:

Dl =
∫ π

0

[(
−p(1) + (2 − N)

(1 − N)

∂q(1)
r

∂r

)
cos θ

−
((

1
r

∂q(1)
r

∂θ
+ r

∂

∂r

(
q(1)

θ

r

))

+ N
(1 − N)

∂

∂r
q(1)

θ − N
(1 − N)

ω(1)

)
sin θ

]
r=1

sin θdθ

(20)

where Dl is the dimensionless drag.
Substituting (17)–(19) into (20) gives:

Dl = (N − 2)

(N − 1)
D̂(1) (21)
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Fig. 4. Dimensionless drag against α for varying ε_p:β = 0.5, N
= 0.5, m = 10 and α_j = 1.4.

5. Discussion

In Fig. 2, there are regions of closed rings on either
side of the porous shell that represent fluid flow that is
circulating. The greater resistance to fluid flow within the
porous region causes the reflecting or bending back of
particular fluid particles within the inner fluid regions,
as seen in Fig. 2, resulting in trapped circulating fluid
particles.

Fig. 3b has a porous region thickness that is 99% of the
overall thickness of the shell, i.e., the shell can be approxi-
mated to a porous sphere, and the uniform velocity field V
is defined at re = 100, this simulates unbounded fluid flow.
Fig. 3b contains the Brinkman transition regions that are
set to 10% of the overall thickness of the porous region [11];
hence, the porous region in Fig. 3b is primarily a Darcy
region. In Fig. 3b the Brinkman regions are 99% and the
Darcy region 1%, of the total porous region. The plots
of Fig. 3b vary from that of [6] who looked at micropolar
fluid flow past a Brinkman porous sphere. The stream-
line patterns from Srinivasacharya and Rajyalakshmi [6]
pass straight through the porous region with very little
bending of the streamlines and no circulation regions.
It should be noted that the boundary conditions used
by Srinivasacharya and Rajyalakshmi are different from
the boundary conditions of this model. Srinivasacharya
and Rajyalakshmi used continuity of pressure, tangen-
tial stresses, velocities, and homogeneous microrotations,
whereas for this model, continuity of normal stresses, jump
in tangential stresses, continuity of velocities, and non-
homogeneous microrotations are used.

There is a decrease in dimensionless drag with increasing
hydraulic resistivity α, for varying porous layer thickness
εp, this is illustrated in Fig. 4. The overall decrease in drag
over the range of 0 ≤ α ≤ 7 is greater as the porous layer
thickness εp increases.

Increasing α represents a decrease in permeability.
Smaller values of permeability represent a greater resis-
tance to fluid flow within the porous regions of the shell.
The greater resistance to fluid flow causes less fluid par-
ticles to enter or penetrate the outer radius of the porous
shell. A decrease in fluid volume flow around the outer
radius of the shell causes a decrease in the overall fric-
tional forces exerted by the fluid on the porous shell and,
hence, a decrease in drag. When the porous region thick-
ness is increased, the effect of α on the overall system is
much more significant. The increasing of α which causes
a decrease in drag, now causes a much more significant
decrease in drag for higher values of porous layer thickness.

The parameters of specific interest are the manufac-
turable porous parameters, hydraulic resistivity α and the
porous layer thickness εp. These parameters, in the context
of modeling sustained drug delivery, represent external
parameters that can be varied.

The circulation regions, on either side of the porous
shell, crosses the porous regions and enters the outer
micropolar region. This effect is most significant for lower
values of α. Hence for lower values of α, circulation or
mixing between the porous region and the micropolar
outer fluid is most pronounced. The drug stored within the
porous material is most effectively mixed and delivered to
the outer fluid for lower values of α.

For higher values of α however, the circulation regions
are confined to inside the porous region and inner microp-
olar fluid region. The drug stored in the porous regions
is circulated internally within the porous region and not
effectively delivered to the outer micropolar fluid.

Circulation regions become more pronounced and
extend into the outer micropolar fluid region for a porous
layer thickness of 50% and greater. The most circulation
occurs when the porous layer thickness is 99% or close to
a whole porous sphere.

6. Conclusion

To ensure effective delivery of the drugs stored in the
porous region, significant mixing between the porous and
outer fluid regions must take place. The results show that
mixing between the porous and outer fluid region is at
its most pronounced for low values of α and for a whole
porous sphere. Optimal drug delivery takes place when a
whole porous sphere of high permeability is used as the dug
carrier.
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