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ABSTRACT

Cultivating crops is vital for driving economies, and maintaining agricultural
fields is crucial for sustaining food production. This initiative centers on
addressing the issue of pest birds, specifically starlings, within vineyards.
The proposed strategy employs sound signals to detect and distinguish
starling birds within the vineyard environment. Through an analysis of
audio inputs from the surroundings, the system can effectively recognize
unique sound patterns associated with starling birds, utilizing deep learning
techniques. Furthermore, this project incorporates ultrasonic sensors for
distance estimation, enabling the calculation of the bird’s proximity from
a fixed point within the vineyard. All of these detection and estimation
processes are executed on a RP2040 microcontroller, specifically the
Cortex-M0+ 133 MHz variant. Following the detection phase, an
autonomous vehicle equipped with red diode lasers can be dispatched to the
designated location to deter the pest birds and safeguard the vineyards from
unwanted disruptions and crop losses.

Keywords: Deep learning, embedded systems, quantized neural networks,
region-based detection.

Submitted: December 23, 2023

Published: February 13, 2024

10.24018/ejeng.2024.9.1.3150

1Presidency University, India.
2National Ilan University, Taiwan.

*Corresponding Author:
e-mail: euhidaman@gmail.com

1. Introduction

Crop damage inflicted by birds persists as a perennial
and daunting challenge within the realm of agriculture.
Conventional bird deterrent methods, such as nets and
loud noises, have gradually waned in effectiveness due
to birds’ adaptation, exacerbating this enduring issue.
Addressing this multifaceted predicament necessitates the
development of bird expulsion strategies that not only
possess adaptability but also real-time bird detection
capabilities.

This research proposes an economical real-time bird
detection solution in vineyards, utilizing microcontrollers
and artificial neural networks [1]. The focal point of this
endeavor lies in creating a real-time bird detection sys-
tem meticulously calibrated for pinpointing starling birds
within grape fields [2].

The proposed system harnesses the capabilities of the
RP2040 microcontroller, esteemed for its cost-efficiency
and robustness—attributes essential for large-scale deploy-
ment, particularly considering the harsh environmental
conditions and extreme temperatures that pervade vine-
yard landscapes.

This innovative system integrates an array of sensors,
encompassing SparkFun MicroMod Machine Learning
Carrier Board’s sound sensors for sound detection and
HC-SR04 ultrasonic sensors for precise distance estima-
tion. By perpetually scrutinizing real-time sound signals
from the surrounding environment, our system adeptly
discerns the unique sound patterns attributed to starling
birds, employing a neural network model. Upon bird
detection, the system ascertains the avian intruder’s exact
location, promptly relaying this information to a central
server system. This seamless communication mechanism
facilitates the expeditious implementation of effective mea-
sures to repel the avian threat.

In the intricate ecosystem of vineyards, the consequences
of bird infestations transcend the superficial realm. The
interconnection among grape bunches renders them sus-
ceptible to an often-underestimated vulnerability. The
initiation of decay within a single grape or its infection
sets a chain reaction in motion, primarily due to its tightly
packed nature and susceptibility to skin cracking. As a
solitary grape deteriorates, it emits chemical compounds
and moisture that can rapidly infiltrate neighboring grapes.
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This swift decay escalation can culminate in the entire
bunch becoming tainted and unsuitable for harvest [4].
Ultimately, the quality and marketability of an entire clus-
ter become jeopardized, potentially resulting in substantial
economic losses for vineyard proprietors [5].

In summary, this research proposes novel endeavors to
tackle the persistent challenge of bird damage in agricul-
ture, especially in vineyards (Fig. 1):

• Innovative Detection System: The proposed system
utilizes the RP2040 microcontroller for cost-
efficiency and robustness, essential for large-scale
deployment in harsh vineyard environments [6].

• Multisensory Integration: The system integrates
SparkFun MicroMod Machine Learning Carrier
Board’s sound sensors for sound detection and
HC-SR04 ultrasonic sensors for precise distance
estimation.

• Deep Learning for Avian Recognition: By analyz-
ing real-time sound signals, the system discerns
unique sound patterns of starling birds using a
neural network model.

• Real-time Communication and Action: Upon bird
detection, the system relays the avian intruder’s
location to a central server, facilitating the expedi-
tious implementation of measures to repel the avian
threat.

This paper is structured into several sections to provide
a comprehensive understanding of our approach. Section
2 provides an overview of related works. The necessary
hardware components are presented in Section 3, and the
software aspects are discussed in Section 4. The method-
ology for creating the deep learning-based model for bird
detection, from its development to deployment in the
RP2040 microcontroller, along with an explanation of the
distance calculation method to the bird, is elaborated upon

in Section 5. Finally, the conclusion and future research
are described in Section 6. Through this work, we aim
not only to protect grapevines but also to safeguard the
economic viability of vineyard harvests, offering a holis-
tic solution to a pressing agricultural issue. This paper
is organized to provide a comprehensive understanding
of our approach and its potential impact on vineyard
management.

2. Literature Review

Bird damage to crops has long been a significant chal-
lenge in the agricultural sector, necessitating effective bird
control strategies. Traditional methods, such as nets and
loud noises, have exhibited diminishing effectiveness over
time due to birds’ remarkable adaptability to these deter-
rents [7]. This persistent issue has underscored the need
for innovative and adaptable solutions that can offer real-
time bird detection capabilities, particularly in the context
of vineyards. One emerging approach is the utilization
of microcontrollers to create cost-effective and robust
solutions. The RP2040 microcontroller variant, with its
cost-efficiency and durability, has gained attention as a
suitable platform for large-scale deployment in challenging
agricultural settings [8]. This choice of hardware reflects
the increasing trend toward employing accessible and
adaptable technologies in precision agriculture.

Sensors play a pivotal role in enabling real-time bird
detection systems. MicroMod Machine Learning board
for sound detection and HC-SR04 ultrasonic sensors
for accurate distance estimation have demonstrated their
effectiveness in monitoring avian activities [9]. When inte-
grated into a comprehensive system, these sensors enable
the continuous analysis of sound patterns associated with

Fig. 1. Pest bird infestation to different crops [3].
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specific bird species and facilitate real-time data collection
for immediate action.

The integration of deep learning techniques in bird
detection systems has shown promise in improving accu-
racy and efficiency [10]. The use of neural network models,
coupled with sensor data, has enabled systems to differ-
entiate between various bird species, contributing to more
effective bird deterrence measures.

The economic implications of bird infestations in vine-
yards cannot be underestimated. The tightly packed nature
of grape clusters and their susceptibility to rapid decay
make vineyards particularly vulnerable to avian threats.
The consequences can extend beyond immediate crop
loss, affecting the overall quality and marketability of
the harvest. Therefore, the development of comprehensive
solutions that address both economic and agricultural con-
cerns is of paramount importance.

In light of these challenges and opportunities, this
research endeavors to provide an innovative solution that
harnesses microcontroller technology, sensor integration,
and deep learning techniques to create a real-time bird
detection system tailored for vineyards. By addressing the
multifaceted predicament of avian threats, this research
aims to contribute to the preservation of grape quality and
the economic sustainability of vineyard operations.

Recent research in agriculture and pest management
has recognized the importance of real-time bird detec-
tion systems in safeguarding crops. These systems have
shown promise in efficiently identifying and mitigating
avian threats. However, the implementation of such sys-
tems remains a challenge, particularly in environments
with demanding conditions like vineyards.

3. Hardware Design

3.1. SparkFun MicroMod RP2040 Processor

The SparkFun MicroMod RP2040 Processor, based
on the RP2040 chipset, offers a robust microcontroller
solution characterized by dual Cortex M0+ processors
operating at up to 133 MHz [11]. It provides a substantial
264 kB of embedded SRAM distributed across six banks,
fostering efficient memory management. This module is
equipped with a comprehensive set of peripherals, includ-
ing USB, UART, I2C, SPI, GPIO pins, analog inputs, and
PWM channels, making it suitable for diverse applica-
tions. Its support for USB 1.1 Host/Device functionality
enhances connectivity options. Moreover, it accommo-
dates popular programming languages like MicroPython
and C/C++, facilitating versatile software development.
With additional features like real-time counters, timers,
and status LEDs, the SparkFun MicroMod RP2040 pro-
cessor is a compelling choice for embedded systems and
IoT research and development.

3.2. SparkFun MicroMod Machine Learning Carrier
Board

The SparkFun MicroMod Machine Learning Carrier
Board is a versatile and feature-rich platform that supports
machine learning and artificial intelligence applications
[12]. Equipped with advanced components such as digital

I2C MEMS microphones, a three-axis ST LIS2DH12TR
accelerometer, and a Himax camera connector, this car-
rier board provides comprehensive sensor capabilities for
audio and vision-based tasks. With USB-C connectivity, a
Qwiic connector for seamless peripheral integration, and
a MicroSD socket for data storage, it offers a robust and
flexible solution for a wide range of machine-learning
applications. Additionally, the inclusion of a lithium bat-
tery for real-time clock functionality ensures reliability in
time-sensitive applications, making the SparkFun Micro-
Mod Machine Learning Carrier Board an ideal choice for
research and development in the field of machine learning.

3.3. Ultrasonic Distance Sensor-HC-SR04

The HC-SR04 is a widely used ultrasonic distance sen-
sor module known for its simplicity and effectiveness in
measuring distances [13]. This sensor operates by emitting
ultrasonic pulses and then measuring the time it takes for
the sound waves to bounce back after hitting an object.
With its low cost and ease of use, the HC-SR04 is a
popular choice in robotics, automation, and various areas,
providing accurate distance measurements within a range
of a few centimeters to several meters. Its versatility and
reliability make it a valuable tool for applications such as
obstacle detection, proximity sensing, and even water level
measurement in certain contexts.

4. Software Design

4.1. TensorFlow Lite for Microcontrollers and Keras

TensorFlow Lite for Microcontrollers (TFLite Micro)
is a compact framework created for microcontrollers and
other devices with limited resources [14]. It offers a collec-
tion of tools and frameworks for deploying and optimizing
TensorFlow models on compact hardware.

Using TensorFlow as its backend, Keras, a high-level
neural network API written in Python, may be applied. For
deep learning academics and practitioners, Keras offers an
intuitive interface that streamlines the building, training,
and deployment of neural networks. A version of Keras
that is included in TFLite Micro enables programmers
to create and train neural networks in Python before
exporting them in a format that can be used by TFLite
Micro for deployment on microcontrollers. This makes it
possible for developers to create models and deploy them
on devices with limited resources using the well-known
Keras interface.

5. Pest Bird Detection

The sound detection methodology as shown in Fig. 2,
follows a structured workflow to develop and deploy a
custom deep-learning based sound classification model on
an RP2040 microcontroller. It begins by setting up the
necessary development environment, including installing
required libraries, command-line tools, and ARM CMSIS
software [15]. Python libraries and ARM CMSIS software
are then installed to facilitate further development. Subse-
quently, the ESC-50 dataset is downloaded and processed,
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Fig. 2. Complete system with different components to monitor environmental factors, along with pest bird detection and expulsion.

and a baseline model is trained. To enhance model perfor-
mance, additional datasets, including pest bird sounds and
background noise, are downloaded, combined, and aug-
mented to create a more comprehensive training dataset.
The baseline model’s classification head is replaced, and
the model is fine-tuned to optimize its performance.

Once the model is refined, it is quantized to a TFLite
version suitable for deployment on the RP2040 board.
The final step involves building and deploying the model
onto the microcontroller. Inference on the RP2040 is
assessed through a serial monitor to ensure the model
performs as expected in a resource-constrained environ-
ment. The study concludes with a thorough evaluation
and validation of the deployed model’s performance. This
systematic methodology ensures a step-by-step approach
to successfully develop, deploy, and test a custom sound
classification model for real-world applications.

5.1. Sound Data Collection and Splitting

The initial baseline neural network model used for
sound classification will undergo training with the ESC-50
dataset, comprising 2,000 environmental sound recordings
categorized into 50 distinct classes [16]. These audio files,
each lasting 5 seconds, are segmented into slices of 16,000
samples after filtering out any silent sections. Additionally,
the original audio samples are strided every 4,000 samples
to augment the dataset size and offer diverse samples for
training. The ESC-50 dataset is organized into three sub-
sets: training, validation, and test sets. In our methodology,
we employ k-fold cross-validation. Specifically, entries
with fold values less than 4 are designated for training,
those with values equal to or greater than 4 but less than
the total number of folds are allocated for validation, and

the remaining entries are reserved for testing. This strategic
partitioning ensures a comprehensive assessment of our
neural network’s performance on distinct subsets of the
dataset, contributing to its robustness and generalization
capability. To visualize the data, as illustrated in Fig. 3, one
can utilize matplotlib along with librosa’s waveform and
spectrogram functions [17].

5.2. Baseline Model Creation

Upon extracting the audio data features, we employ
the TensorFlow Keras API to construct the model. This
model is configured with accuracy as the metric, an Adam
optimizer, and a loss function of sparse categorical cross-
entropy. Furthermore, we have defined early stopping and
a dynamic learning rate scheduler as callbacks during the
training process.

Fig. 3. Visualization of amplitude of sound wave of birds from
the ESC-50 dataset over time in milliseconds.
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Fig. 4. Sequential 8-layer baseline model for audio classification.

With these settings of a total of 14,973 parameters, as
depicted in Fig. 4, the model achieved a 39% loss and an
accuracy of 24.44%. The low accuracy of the model, is
due to the vastness of the ESC-500 dataset. The high loss
and low accuracy of the baseline model does not have any
impact on the overall project, as it will be refined further
for sound categorization tasks.

5.3. Transfer Learning [18]

To ensure the model can accurately identify pest-bird
sounds, a custom dataset containing mynah sounds needs
to be utilized. This custom dataset should be augmented
with background noises found in the TensorFlow speech
commands directory (Fig. 5).

To enhance the existing mynah-sounds dataset, data
augmentation techniques should be applied. This involves
introducing white noise to the mynah sound clips, incor-
porating random periods of silence, and even merging two
or more audio signals to expand the dataset. It is essential
to segment the mynah sounds dataset into 1-second sound
snippets and integrate them with the other background
noises. This process not only increases the dataset’s size but
also enhances its consistency.

Fig. 5. Spectrogram depicting pest bird audio
augmented with white noise.

Once the dataset has been augmented and grown sub-
stantially, it should be partitioned again into training,
validation, and testing subsets.

Finally, to create a binary classifier that exclusively iden-
tifies mynah sounds, the initial model’s head and tail must
be replaced. Subsequently, the model should be retrained
using the newly augmented dataset.

5.4. Quantization-Aware Training and Model
Compression
Following the completion of model training for mynah

sound detection, the subsequent stage involves quantizing
the model for execution on the RP2040 microcontroller.
Quantization-aware training is employed to optimize
the model’s performance with reduced-precision com-
putations, mirroring real deployment scenarios. This
methodology results in a model capable of generating more
streamlined, compact models, as shown in Fig. 6, with a
total of 812 parameters.

The procedure outlined in (1) [19] initiates by ascer-
taining the required number of bits, denoted as m, for
representing the unsigned integer part of the conversion
from floating-point to fixed-point numbers:

m = 1 +
⌊

log2

(
max

1≤i≤N
|xi|

)⌋
(1)

where xi represents an element within the floating-point
vector x, which has a length of N. When m is a posi-
tive value, it signifies the requirement for m bits to the
absolute value of the integer part. Conversely, when m
is negative, it indicates that there are m leading unused
bits in the fractional portion. Consequently, this approach
enables the enhancement of precision for vectors con-
taining values smaller than 21, as it permits the removal
of redundant leading bits while introducing additional
precision-enhancing trailing bits. This simplifies the cal-
culation of the number of bits in the remaining fractional
part, denoted as n, as follows:

n = w − m − 1 (2)

where w denotes the width of the data type. When n > 0, it
signifies that precision can be adequately conveyed using

Fig. 6. Final quantized model for deployment on RP2040.
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n bits. Conversely, if n is less than or equal to 0, it implies
that the full accuracy of the integer cannot be faithfully
represented.

5.5. Final Model Deployment and Inference on RP2040

The final stage involves transferring the generated
model onto the RP2040 microcontroller through a pro-
cess referred to as flashing. Prior to this, the model must
undergo compilation and construction using the C/C++
SDK designed for the microcontroller [20]. This compi-
lation and construction process encompasses tasks like
configuring the board’s LEDs for output, setting up the
TFLite library and model for inference, and establishing
the CMSIS-DSP based digital signal processing pipeline.
Furthermore, the MicroMod Machine Learning carrier
board microphone is activated to enable real-time audio
input.

The deployed model yielded an accuracy of 69.07% on
the validation dataset, which was deemed a commendable
result for this particular task. Furthermore, the model suc-
cessfully detected the distinctive sound of the mynah bird,
even in the presence of background noise. This showcases
the model’s effectiveness in filtering out undesired ambient
sounds and focusing on the intended target sound.

5.6. Distance Estimation

The proposed system employs a sound sensor for the
detection of starlings or nuisance birds. Upon detecting a
bird above a specified threshold, it triggers the activation
of ultrasonic sensors to gauge the distance between the
bird and the transmitter [21]. In our proposed system, we
utilize the HC-SR04 ultrasonic sensor, which calculates the

Fig. 7. Arrangement of sound and distance sensor arrays.

distance by measuring the time taken for a sound wave to
travel to the bird and return to the sensor.

The formula used for distance calculation is as follows:

s = t
2

× c (3)

where t represents the time it takes for the sound wave to
travel to the object and return to the sensor, and c denotes
the speed of sound in the air (approximately 343 meters per
second at room temperature).

To enhance accuracy, we employ multiple ultrasonic
sensors positioned at various angles for precise distance
estimation, as depicted in Fig. 7 [22]. To mitigate potential
measurement errors, the distance estimation process is
executed simultaneously multiple times, and the average of
the results is computed to obtain the most precise distance
to the pest bird [23].

Once the presence of a bird has been detected and its
distance accurately determined, the entire dataset is trans-
mitted to a central local server. This server then dispatches
a bird interception vehicle equipped with a red diode
designed to deter the birds.

6. Conclusion

The pest bird detection system, utilizing embedded sys-
tems with the SparkFun MicroMod RP2040 processor,
MicroMod Machine Learning board, and HC-SR04 ultra-
sonic sensor, effectively identifies pest birds in grape fields.
While leveraging continuous field sounds for detection, the
system’s trade-off between accuracy and rapid response
due to limited RAM (264 KB) underscores the need for
optimization. Real-time monitoring empowers farmers to
swiftly address infestations, reducing reliance on harmful
pesticides. This study highlights embedded systems’ inno-
vative potential, scalable to larger farms for diverse pest
bird species detection.

Future work prioritizes enhancing detection accuracy
through refined neural networks, additional sensor data,
and algorithms to minimize false positives [24]. Broad-
ening the system’s scope to detect a wider range of pest
bird species involves diverse sound datasets and tech-
niques for species differentiation based on audio and
movement patterns [25]. For larger operations, research
into networked deployments, centralized monitoring, and
remote management is essential. Energy efficiency inves-
tigations encompass low-power hardware, energy-efficient
algorithms, and renewable sources [26].

Integrating with precision agriculture, real-time decision
support, and long-term monitoring is crucial. User-
friendly interfaces, environmental impact assessment, and
cost optimization ensure sustainability and affordability
for farmers [27]. This holistic approach aims to make
the system a comprehensive, accessible, and sustainable
solution for pest bird detection in agriculture.
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