European Journal of Engineering and Technology Research
Vol 1| Issue CIE | December 2023
ISSN 2736-576X

RESEARCH ARTICLE

CrossMark

ABSTRACT

Assessment of Data Representation in Scratch Via
the SOLO Taxonomy

Anastasios Ladias"*, Theodoros Karvounidis’, Dimitrios Ladias’, and Christos Douligeris’

The work addresses the significance of robotics in education, emphasizing
its role in enhancing STEM skills through programming and sensory
feedback. Scratch, a multimedia programming environment, is highlighted
as a tool for robotic projects. Within Scratch, this work discusses data
representation, distinguishing between visible and transparent data. The
current work focuses on the visible data. Variables in Scratch are made
tangible, helping users understand their function. Developers define their
own data, such as values, variables, lists, and call parameters, while Scratch
also provides system data. This system data can be numeric, alphanumeric,
or logical, and its representation in code varies. To evaluate how data
are used in Scratch by novice programmers, this work also proposes
an evaluation framework using the Structure of the Observed Learning
Outcome (SOLO) taxonomy. This evaluation framework can be used by the
teacher as a tool either to evaluate with measurable criteria the students’
code (on issues related to the way the data indicates their presence in
Scratch) or to develop their personal teaching paths, thus creating mental
scaffolds that assist students to master new knowledge.

Keywords: Assessment, Data representation, Scratch, SOLO Taxonomy.

Submitted: December 04, 2023
Published: December 29, 2023

d) 10.24018/ejeng 2023.1.CIE.3134

! Former Bureau of School Directors, Min-
istry of Education, Greece.

2 Department of Informatics, University of
Piraeus, Piraeus, Greece.

3 Department of Informatics, National and
Kapodistrian University of Athens, Greece.
4 Department of Informatics, University of
Piraeus, Greece.

* Corresponding Author:
e-mail: ladiastas@gmail.com

1. INTRODUCTION

The use of robotics in education enables pupils to
enhance their skills in a variety of disciplines, including
STEM [1]. These skills include math physics, engineering,
programming, and beyond and they are essential in a world
where technology is progressing rapidly. By programming
a robot, the students are able to receive additional sensory
feedback from the robot’s enactment of digital codes, thus
elevating the learning process from an abstract concept
into something real [2]. One may not find a scientific
framework with measurable evaluation criteria to assess
Educational Robotics works that use Scratch. Even though
there are various evaluation frameworks for the qualitative
and quantitative assessment of other type of program-
ming languages [3], [4]. In the context of the Panhellenic
Educational Robotics Competition for Primary School
of WRO-Hellas [5], in which Scratch is used, it is found
that there is a “lack of measurable evaluation criteria.
These observations led to the development of a long-
term research to find measurable criteria evaluation first
in the code and then in the construction of the projects”.
This research attempts to cover three axes of the robotic
structures (see Fig. 1):

(a) the movement mechanism

(b) the energy the robot uses

(c) the control of the robot’s mechanism [6].

The research focuses on the field of control via com-
puter. In this area, a framework for evaluating visual
programming using tile codes is about to be completed.
This framework considers both the anatomy of the code
and its functionality. In the field of code anatomy, a pro-
gram consists of algorithm plus data. The study of the
algorithms as functionality in Scratch has been developed
in a series of scientific papers [7].

The research on the data attempts to formulate a pro-
posal for assessing how these are being used by students
in the Scratch programming environment. The factors that
are been taken into consideration when evaluating the
use of data are: their form, the types and symbolism of
their content, the ways of their use, their carriers, their
representation, the organization of simple and multimedia
data, their processing, and their naming. In this paper, we
examine the ways that data are being represented in the
Scratch programming environment. Data in Scratch can
exist (a) inside the program either within commands or as
mediators in the program flow, (b) in the “code” folder,

Copyright: © 2023 Ladias et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original source is cited.

Vol 1| Issue CIE | December 2023

https://crossmark.crossref.org/dialog/?doi=10.24018/ejeng.2023.1.CIE.3134&domain=pdf
http://dx.doi.org/10.24018/ejeng.2023.1.CIE.3134
mailto:ladiastas@gmail.com

Assessment of Data Representation in Scratch Via the SOLO Taxonomy

mechanism

energy

e\raluatlon anatomy

algorithm

Ladias et al.

forms

carriers
visible

data representation

of robotic / STEM projects
\control functionality

organization \‘transparent

processing
giving a name

Fig. 1. The research framework in data representation in Scratch.

and (c) on the stage as “display variables”. Data in Scratch
based on the way that are being represented are distin-
guished into “classic data” (visible) and “transparent” data
(Fig. 1). In the current work we deal with the visible data.

To study, how novice programmers understand pro-
gramming data, we adopted the Structure of the Observed
Learning Outcome (SOLO) taxonomy proposed by Biggs
and Collis [8] as a promising educational taxonomy
[O]H11]. Research findings have demonstrated that SOLO
taxonomy is an efficient framework for studying students’
representations of programming concepts and studying
their development in programming [12].

Based on all aforementioned the rest of the document
is organized as follows: The next section is a thorough
investigation on the data in the Scratch environment. It
starts with a brief description of the Scratch program-
ming Environment itself and the data in it, followed by a
description of data visibility, the developer defined data,
and system data and how they are represented. It continues
with the properties of objects as data, the coordinates of
the clones as undefined data, and the scenarios threads
with “broadcast message and wait” messages. Hierarchical
and network navigation structures using backdrops and
clothing embedded in multimedia recordings as data are
then provided. The first part concludes with the use of
data as program flow control, a transparent data structure
during a recursive procedure call, and the prioritization
in the execution of pseudo-parallel scenarios. The second
part starts with a brief outline of the SOLO taxonomy
description. Based on the SOLO it follows the assessment
of the data, categorized as visible and transparent. The
work concludes in Section IX.

2. THE SCRATCH PROGRAMMING ENVIRONMENT

Scratch is an educational multimedia programming
environment in which the novice developer can engage in
digital projects by creating animations, simulations, and
games [13]. One key feature of Scratch that enhances its
educational value is its ability to make variables tactile and
understandable. As learners handle these variables, they
gain a clearer understanding of their functional role within
programming. Additionally, while Scratch allows devel-
opers to define their unique sets of data—encompassing
values, variables, lists, and call parameters—the platform
also has inbuilt system data. In the Scratch environ-
ment, the code consists of fragments-parts called scenarios,
which are distributed in “objects with properties to which
they can assign behaviors by specifying events and actions”

[14]. In Scratch, a program is understood as a set of
scenarios that run in all objects and backgrounds. Making
use of the metaphor that parallels the development of a
project in Scratch with the staging of a shadow theatre
play, the scenarios are those that control the behavior of
objects corresponding to the Greek traditional cartoon
“karagiozis” (Fig. 2).

The shadows/projections of the figures/objects on the
screen correspond to the roles/sprites in the Scratch stage.
Each projected onto the stage role occupies a layer, thus
creating overlaid layers.

3. THE DATA IN THE SCRATCH ENVIRONMENT

Maloney et al. [13] state that in most text-based pro-
gramming languages, variables are invisible, abstract, and
unintelligible but Scratch turns variables into concrete
objects that the user can see and manipulate, making them
more understandable through editing and observation. In
Scratch, a variable, which exists in the “Code” folder in
the “Variables” field (left in Fig. 3), can be displayed as a
“variable display” in the stage (right in Fig. 3).

These “variable displays” in the stage allow the users to
see the result of using certain commands during program
execution such as “change x by 17, helping them to build
a mental picture of how the values of variables evolve and
ultimately how the variables work.

In addition, the “variables display” in the stage are useful
either as indicators (e.g., for displaying the score in a game)
or as adjustments of a variable via a slider display during
a program execution. An example of the benefits of using
the “variable display” in Scratch is the execution of the
“network classification” program [15], as shown in Fig. 4.

4. DATA VISIBILITY BY THE DEVELOPER AND THE USER

The existence of a piece of data in Scratch does not
imply its clear visibility to the developer and the user of the
program. The representation of this piece of data can vary
from being entirely visible and manageable (“classical”
data) to being undefined and “transparent” (also called
“control” data).

This “visibility” is determined on the one hand by how
a piece of data justifies its presence in Scratch and on the
other hand by how the developer perceives it. Hence, there
are cases where a less experienced developer may look at
visible data but not see (perceive) their existence and there
exist cases where an experienced programmer (developer)

Vol 1| Issue CIE | December 2023

Ladias et al.

Assessment of Data Representation in Scratch Via the SOLO Taxonomy

SEAge mm

Karagiozis’ sprite

of the role /sprite | ,._'.

of “Karagiozis” wessp-
-

switch backdrop lo backdropl =

Kolokotronis’ sprite

ob]ect O] !
“Karagiozis” 2

= nameim

Fig. 2. The Scratch environment with the objects, their projection on the stage layers and the programming scripts that define their behaviors.

= Cod o Costurmes W Sounds . O
| @ variables velosity EETD A
Mo C representations
Make a Variabie gradient IEEID f
@ say (jon scon IE-E) vermess OF variables
s) (D) ¥5:9) in the scene
the variables sga - B normal readout
2 0®
Everts.
- o shider

Fig. 3. In Scratch, the display of a variable in the stage can appear as (A) a “normal text view” e.g., the variable “velocity”,
(B) a “large text view” e.g., the variable “score”, and (C) a “slider” e.g., the variable “gradient”.

el \

X
X

AMEED 1 ED ct @B @B 1 @ ff
“\/\ .

A2 (EED B2 IR cz- D2 (I E2 @I

A3m33m03m93m E3 GED

-
MIEI 34— 64&194@54&!

A5m35-55m Pl 14

~No Sy e
~ \/ \/" N s e
A¢c @il Bs (BN cec (D pc GEEN = (EED r¢ (EED

tm,,-* — —_—
el ni
F2 @D
———
\/
o™
F: EEID
~— e - T
,/" & -H\-n \
F4 @D

X)\.

Es KD | F5 DD

Fig. 4. Presentation of variable values in the stage, via “variable display”, which shows the changes
in variable values when performing a “network classification” are shown.

can perceive the existence of a non-visible and implicit data
structure.

The “visible” or “classic” data include the input, the
output, and the intermediate values resulting from calcu-
lations during the program execution. This data is visible
to the programmer and is displayed in Scratch in three
areas: (a) in the “Code” folder (Fig. 5 to all area A’s), (b)
within the program instructions (Fig. 5, area B), and (c)
in the stage during program execution (Fig. 5, area C). In
the case of displaying the data in the stage, the data is
also visible to the user/viewer during program execution.

In the case where the data concerns the communication
between the scenarios of the program (Fig. 5, area D) these
are not displayed; they are invisible and they are classified
as “transparent”. Transparent data are typically used as
program flow control data.

5. THE DEVELOPER-DEFINED DaTA (DDD)

The Developer Defined Data (DDD) are the most visi-
ble/discernible data and this is aimed by the fact that it is
created after a conscious choice by the developer to meet a

Vol 1| Issue CIE | December 2023

Assessment of Data Representation in Scratch Via the SOLO Taxonomy

folder “Code”

\

= Code o Costumes

@ seming

Maticey

o Sounds

Looks

Opesators
iariaklas . i
Wy Blocks @A

g =

program development area

Ladias et al.
stage
N ® nm X
angle T
Cat: direction (EETN
godo random poskion v answer (D C
@ =
afy o
&
@ Speite Cat -z AT t v am g
Q Shin @ o Size 0 Dirwction 1%
= [—q Eackirops
£ -~ -,

Fig. 5. The places where “classical” data can be found in the Scratch environment.

programming need. The DDDs are (a) values, (b) variables,
and lists, and (c) call parameters to procedures.

The values set by the developer in the program com-
mands are considered as data embedded in the code.

The variables and the lists appear in the “Code” folder
in the “Variables” field (Fig. 6A), within the program com-
mands and in the stage. It should be noted that only for
these variables and lists within this category there is a
possibility to be or not to be visible in the stage; these vari-
ables can then be visible when they are within commands
as shown in Fig. 6B with the variable “this”, apart from
checking them in the “Code” folder. Variables and lists in
Scratch when they use the option of “variables display”
in Scratch, they can act as indicators (e.g., for the display
of the score in a game or the time evolution of a size). In
addition, the user can adjust the variable value using the
slider during program execution (Fig. 3C).

The call parameters to procedures are declared by
the developer when the procedures are defined (lig. 6,
area C) and they are activated when the procedure is
called by a scenario during the program execution. They,

= e & L Wn Souncd:
New Variable

@ varisbies

New variable name: . Make a Variae
| = @
scomw

20D

® For all sprites 2 For this speite only
st ange - 0 (@

i n =

New list name

My Blacks

Variabies
| | o 2CD

® For all sprites) For this sprite only

ot ﬂ

therefore, only appear in the program and they act as
variables only during the procedure call and execution
(Fig. 6, area D).

6. SyYSTEM DATA (SD)

The “System Data” (SD) is a second category of ready-
to-use data provided by Scratch to the developer. SD are
located in the “Codes” folder in the objects and back-
ground. The SD can be either numeric, alphanumeric, or
logical type. Moreover, for the SD there is the option
of either ticking to be displayed as a “variable display”
(D+VD) or they are without the option of “variable dis-
play” (D—VD). In particular, a numeric or alphanumeric
type SD, which has an oval shape in Fig. 7 may be D+VD
or D—VD while all of the logical type SD (which have a
hexagonal shape in Fig. 7) are D—VD. There is no option
using commands to make SD appear as “variable represen-
tations” in the stage.

My Blocks

Add 30 input
fumber of et Boalean

Add an inpat Add a label

Fun without screen refresh

Fig. 6. Areas where the data defined by the developer are displayed.

Vol 1 | Issue CIE | December 2023

Ladias et al.

Assessment of Data Representation in Scratch Via the SOLO Taxonomy

System Variables

Logical

variables

mousa ¥

backdop# » of Siage »

s @)
®-®

days since 2000

pichmrﬂulloluo

wron ot €@

ws = o @
e Y
wer @) o €D

Fig. 7. Indicative presentation of the system data. Their categorization depends on whether
they can be displayed (D+VD) or not on the stage (D—VD).

7. REPRESENTATION OF THE SYSTEM DATA IN THE CODE

In the commands “set effect (parameter = color) to
(value)”, “when (parameter = intensity) > (value)”, “set
(parameter = variable) to (value)”, the data is the “value”
and the “parameter”. Based on the above, two additional
ways of distinguishing system data can be derived: (a) their
value domain which can be closed or open, and (b) their
ability to change their value during the program execution.

Combining the two previous ways of distinguishing sys-
tem data, we obtain the table of Fig. 8. We observe that
there are data in the commands that remain constant
during the program execution; these data are displayed in
a rectangular frame with rounded corners (Figs. 8A and
8C). There are also data that can be changed as a result of
the program execution and are depicted inside an oval box
(Figs. 8B and 8D). Moreover, the data whose value domain
is closed (and predetermined by the system) are shown in A
and B areas of Fig. 8, while those data whose value domain
can (in various ways) be extended are shown in the areas
of C and D areas of Fig. &.

In Fig. 8 grey areas indicate correlations between
“neighboring” codes. Thus, the grey area Al-Bl shows
the two ways that an event is detected-on the left by an
interrupt technique and on the right by a polling technique
[16]. The grey area B1 shows a comparison between codes
where the left one receives a value from a finite value list
(the left command within the B1 cell), while the right one
receives a value through a variable whose value is derived
from the previous finite value list of Greek characters on
the keyboard. However, as shown in the codes within the
grey area B1-D5, there is a way to bypass the finite value
list of values from which the variable takes values and to
extend the values of this list, e.g., to the Greek characters
that are available on the keyboard. Similarly, in the grey
areas C1—DI1 and C3—D3 a comparison is made between
codes where the left code fetches a value from a finite value
list via an interrupt technique, while the right code fetches

a value via a polling technique either through the previous
finite value list or through a variable.

8. ASSESSMENT OF DATA

The assessment of programming code in education
ensures that students are not just coding, but are thinking,
understanding, and growing as budding software devel-
opers and computer scientists. The assessment of data,
in particular, is also important. Data are more than just
placeholders for values in code. They represent a coder’s
ability to think logically, efficiently, and clearly. By assess-
ing their use in education, instructors can ensure students
are building a strong foundation for all future coding
endeavors. For this reason, as mentioned in the Introduc-
tion, we adopted the SOLO.

8.1. The SOLO Taxonomy

The SOLO taxonomy is the tool that will be used to
evaluate how data is used in Scratch code. The Structure
of Observed Learning Outcomes (SOLO) taxonomy of
[8] proposes the assessment of knowledge based on the
structure of the observed learning outcome, classifying
these outcomes into five hierarchical levels:

1) The pre-structural level or use of unrelated and disor-
ganized information that does not make sense.

2) The mono-structural level, where a limited perspec-
tive is observed—mainly one element or aspect is used or
emphasized-while the other components are omitted, and
no significant connections are made between the parts.

3) The multi-structural level, in which there is a multi-
point perspective-several relevant elements or aspects are
used or recognized-but there are no significant connec-
tions and a complete picture has not yet been formed.

4) The relational level, in which there is a holistic per-
spective where the meta—connections between the parts are

Vol 1| Issue CIE | December 2023

Assessment of Data Representation in Scratch Via the SOLO Taxonomy

Ladias et al.

during program execution the data...

... remains constant

... can change

o c1|p1

D2

... open [extensible

.

D3
e |

set message = to () o

commands with value field...

... closed

Fig. 8. System data with predefined value domain (A, B) or with expandable value domain (C, D) and
variables that during the program remain either constant (A, C) or can be changed (B, D).

realized and the importance of the parts in relation to the
whole is demonstrated and appreciated and

5) The level of extended abstract, in which in addition to
the features of the previous relational level, the content is
treated as an instance of a more general case.

8.2. Assessment of “Visible” Data With the SOLO
Taxonomy

Taking into account what has been mentioned in the
paragraphs “Developer Defined Data” (DDD) and “Sys-
tem Data” (SD) we create Table 1. The criteria by which the
data are classified in terms of their representation are, on
the one hand, the way the developer and the user perceive
them and, on the other hand, the way they are represented
in the Scratch environment.

An assessment of the representation of data in the
Scratch environment with the SOLO taxonomy can be
based on the table summary of Table I. The following
observations emerge from this table:

The values appear only inside the commands in the
program and may not be recognized as data by non-
experienced programmers.

As the DDD creation is a conscious choice of the
developer, they result in more intense mental repre-
sentations compared to the existing SD. We believe
this justifies why DDD is being considered more
observable by the developer compared to SD.
Simple variables are the only ones that provide
the user/viewer of the program with the ability to
interact through the “slider display” of variables
during the program execution.

The DDD variables (simple and lists) are the only
ones that can appear/disappear in the stage via
commands during program execution.

The procedures’ parameters are the only visible
data that “live” temporarily and for as long as the
execution of the process lasts.

Vol 1 | Issue CIE | December 2023

Ladias et al.

Assessment of Data Representation in Scratch Via the SOLO Taxonomy

TABLE I: POSSIBILITIES OF DATA REPRESENTATION DEPENDING ON WHERE THEY APPEAR IN
SCRATCH AND AS A FUNCTION OF THE MODE (VISIBLE OR TRANSPARENT)

Representation of the data In terms of space SOLO

taxonomy
On stage as “display variables” In the In the level
“code” program
Without With Using folder (inside the
slider slider com- commands)
mands

In display Visible Developer- Value X Mono-
terms defined structural
data Variable Simple X X X X Extended

(DDD) abstract
List X X X Relational
Procedure X Relational

parame-
ters

System D+VD X X Multi-
data structural

D-VD X X Mono-
structural

e As the System Data are not declared by the pro-
grammer as variables, inexperienced programmers
do not realize that they are data; they often consider
them as parts of the code. Such a view indicates that
some programming instructors do not take advan-
tage of teaching selection statements using logical
type system variables (e.g., if mouse down) without
requiring them to use DDD for the statements’
logical conditions (if my variable > 0).

Based on the foregoing and with the criterion of the
degree to which the data becomes visible, the following
classification of the representation of the visible data in the
levels of the SOLO taxonomy is proposed:

e Atthe level of the extended abstract, the simple vari-
ables of the DDD (Developer Defined Data) are
ranked as those data with the most representations.

e At the relational level, the lists and parameters of
the DDD procedures are included as conscious
creations of the programmer.

e At the multi-structural level are classified as the
Boards that can appear on stage.

o At the mono-structural level, the values that cannot
be displayed on the stage (D—VD) are included as
the least visible from the DDD and SD (System
Data).

A more in-depth assessment of the System Data using the
SOLO taxonomy can be based on the table in Fig. 8 of
the “Display of the System Data in the Code” paragraph.
Based on the criteria of the value fields (opened—closed)
and the possibility of changing the parameters of the com-
mands during the execution of the program, it following
classification is proposed for the representation of the
System Data at the levels of the SOLO taxonomy:

e The mono-structural level includes the parameters-
data of the commands with a closed value domain,
which remains constant during program execution
(Fig. 8A).

e The multi-structural level includes the parameters-
data of the commands with an open and extensible
values domain which remain constant during the
execution of the program (Fig. 8C).

e The relational level includes the parameters-data
of the commands with a closed value field which
can be changed during the program execution
(Fig. 8B).

e The level of extended abstract includes the data
parameters of the commands with an open and
extensible value field that can be changed during
the execution of the program (Fig. 8D).

9. CONCLUSION

Within the Scratch programming environment, data rep-
resentation emerges as a significant aspect of the learning
curve. The text draws a distinction between data that is
visible to the user and that which remains “transparent”
or hidden in the backdrop. One key feature of Scratch
that enhances its educational value is its ability to make
variables tactile and understandable. As learners manipu-
late these variables, they gain a clearer understanding of
their functional role within programming. Additionally,
while Scratch allows developers to define their unique
sets of data encompassing values, variables, lists, and call
parameters—the platform also has an inbuilt system data.

This work is part of a larger research on data assessment
in Scratch. Other parts, beyond the present research on
data representation, are being developed in parallel and
relate to the formats, types, and symbolization of their
content, ways of using them, their operators, the organiza-
tion of simple and multimedia data, and their processing
and naming. The data research belongs to the subcategory
dealing with the anatomy of code, which in turn is part of
a broader framework that attempts to define the specifi-
cations for the evaluation of STEM educational projects

Vol 1| Issue CIE | December 2023

Assessment of Data Representation in Scratch Via the SOLO Taxonomy

in the context of the WRO-Hellas National Educational
Robotics Competition.

The assessment of expected learning outcomes with the
SOLO taxonomy related to the representations of visibil-
ities considered in this paper can be tools for educators.
These tools can be used both to assess the code developed
by students in Scratch but also to formulate guidelines
regarding the order of instruction by designing their own
personal teaching paths. Code evaluation can be done
by identifying the features of a student’s code data and
ranking them into specific levels of the SOLO taxonomy,
thus providing measurable data on these features.

ACKNOWLEDGMENT

This work has been partially supported by UPRC (Uni-
versity of Piraecus Research Center) and by COSMOTE
through a PEDION24 grant.

CONFLICT OF INTEREST

Authors declare that they do not have any conflict of
interest.

REFERENCES

[11 Ching Y-H, Yang D, Wang S, Back Y, Swanson S, Chittoori
B. Elementary school student development of STEM
attitudes and perceived learning in a STEM integrated
robotics curriculum. TechTrends. April 2019;63:590-601. doi:
10.1007/s11528-019-00388-0.

[2] Ching Y-H, Hsu Y-C, Baldwin S. Developing computational think-
ing with educational technologies for young learners. TechTrends.
April 2018;62(6):563-73. doi: 10.1007/s11528-018-0292-7.

[3] Friedman MA, Voas JM. Software Assessment: reliability, Safety,
Testability. John Wiley & Sons, Inc; 1995.

[4] Jackson M, Crouch S, Baxter R. Software evaluation: criteria-
based assessment. Software sustainability institute, The
university of Edinburgh. 2011. (last accessed 1 October 2021).
Available from: http://software.ac.uk/sites/default/files/SSI-
SoftwareEvaluationCriteria.pdf.

[5] Somalakidis I, Ladias A. The what, the how and the why of the pan-
hellenic educational robotics competition for the primary school of
WRO Hellas. Erkyna, Rev Educ-Sci Issues. 2021;Issue 23:84-108,
Last accessed: 31January 2023. Available from: https://erkyna.gr/e
docs/periodiko/dimosieyseis/pliroforiki/t23-06.pdf.

[6] Ladias A, Georgopoulos K, Souvatzoglou G, Ladias D. Proposal
for an educational robotics & STEM evaluation framework with
the SOLO taxonomy. Proceedings of the 3rd Panhellenic Conference:
open Educational Resources and E-Learning. Florina-GR, October
3-4, 2020.

[71 Ladias A, Karvounidis T, Bellou I. Curriculum proposal for
computer programming within STEM. Proceedings of the Panhel-
lenic Conference: curricula in an Ever-Changing World, PAPEDE.
Athens-GR, 1-3 November 2020.

[8] BiggsJB, Collis KF. Evaluating the Quality of Learning. The SOLO
Taxonomy. NY: Academic Press; 1982.

[9] Lister R, Fidge C, Teague D. Further evidence of a relationship
between explaining, tracing and writing skills in introductory pro-
gramming. ACM SIGCSE Bull. 2009;41(3):161-5.

[10] Thomson E. Holistic assessment criteria: applying SOLO to pro-
gramming projects. Proceedings of the 9th Australian Computer
Society, pp. 155-62, Ballarat, Victoria: Australian Computer Soci-
ety; 2007.

[11] Jimoyiannis A. Using SOLO taxonomy to explore students’ mental
models of the programming variable and the assignment statement.
Themes Sci Technol Educ. 2011;4(2):53-74.

[12] Resnick M, Maloney J, Monroy-Hernandez A, Rusk N, Eastmond
E, Brennan K, ef al. Scratch: programming for all. Commun Acm.
2009;52(11):60-7.

Ladias et al.

[13] Maloney J, Resnick M, Rusk N, Silverman B, Eastmond
E. The scratch program-ming language and environment.
ACM Trans Comput Educ. November 2010;10(4). doi:
10.1145/1868358.1868363. Article 16, pp. 1-15.

[14] Mavrochalivides G, Makris G, Bekos N. Didactic approach to
object oriented programming with scratch. Proceedings of the
6th Panhellenic Informatics Teaching Conference. Florina-GR,
20-22 April 2012. Last accessed March 20 2023. Available from:
https://docplayer.gr/9680425-Didaktiki-proseggisi-toy-antikeimeno
strafoys-programmatismoy-me-to-scratch.html.

[15] Bell T, Witten I-H, Fellows T. Computer science unplugged... off-
line activities and games for all ages. 2010. Last accessed: March
20-2023. Available from: https://jmvidal.cse.sc.edu/library/bell98a.
pdf.

[16] Ladias A, Ladias D, Karvounidis T. Categorization of requests
detecting in scratch using the SOLO taxonomy. Proceedings
of the 4th South-East Europe Design Automation, Computer
Engineering, Computer Networks and Social Media Conference
(SEEDA-CECNSM). Piracus-GR, 20-22 September 2019. doi:
10.1109/SEEDA-CECNSM.2019.8908438.

Vol 1| Issue CIE | December 2023

https://doi.org/10.1007/s11528-019-00388-0
https://doi.org/10.1007/s11528-018-0292-7
http://software. ac.uk/sites/default/files/SSI-SoftwareEvaluationCriteria. pdf
http://software. ac.uk/sites/default/files/SSI-SoftwareEvaluationCriteria. pdf
https://erkyna.gr/e_docs/periodiko/dimosieyseis/pliroforiki/t23-06.pdf
https://erkyna.gr/e_docs/periodiko/dimosieyseis/pliroforiki/t23-06.pdf
https://doi.org/10.1145/1868358.1868363
https://docplayer.gr/9680425-Didaktiki-proseggisi-toy-antikeimenostrafoys-programmatismoy-me-to-scratch.html
https://jmvidal.cse.sc.edu/library/bell98a.pdf
https://jmvidal.cse.sc.edu/library/bell98a.pdf
https://doi.org/10.1109/SEEDA-CECNSM.2019.8908438

	Assessment of Data Representation in Scratch Via the SOLO Taxonomy
	1. Introduction
	2. The Scratch Programming Environment
	3. The Data in the Scratch Environment
	4. Data Visibility by the Developer and the User
	5. The Developer-Defined Data DDD
	6. System Data SD
	7. Representation of the System Data in the Code
	8. Assessment of Data
	9. Conclusion
	Conflict of Interest
	References

