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ABSTRACT

In the modern era, the integration of renewable energy sources (RES) has
bolstered the autonomy of urban energy infrastructures, reducing reliance
on distant sources and grids. Batteries serve as a vital bridge between power
supply and fluctuating load demands within RES systems. However, the
unpredictable nature of RES behavior and varying load requirements often
subject batteries to repeated deep cycles and irregular charging patterns.
These cycles diminish the battery’s lifespan and escalate replacement costs.
This study presents an innovative control strategy for a Solar-Wind model
featuring a Battery-Supercapacitor Hybrid Energy Storage System. The
objective is to prolong the battery’s operational lifespan by mitigating
intermittent strain and high current demands. In contrast to conventional
methods, the proposed control approach incorporates a Low-Pass Filter
(LPF) and a Fuzzy Logic Controller (FLC). Firstly, the LPF minimizes
the oscillations in battery consumption. Simultaneously, the FLC optimizes
the high current demand on the battery while vigilantly monitoring the
supercapacitor’s charge levels. Moreover, Grey Wolf Optimization (GWO)
is employed to fine-tune the FLC’s membership functions, ensuring optimal
peak current attenuation in batteries. The effectiveness of the proposed
model is benchmarked against standard control techniques, namely Rule-
Based Controller and Filtration-Based Controller. Comparative analysis
reveals that the proposed method substantially reduces peak current and
high power requirements of the battery. Consequently, this enhances the
utilization of the supercapacitor, significantly augmenting the battery’s
operational life. The results demonstrate a remarkable improvement
over conventional systems, emphasizing the potential of this approach in
optimizing energy storage systems for sustainable, long-term performance.
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1. Introduction

In Renewable Energy Systems (RES), batteries play a
crucial role in bridging the power gap between supply and
varying load demands. However, due to the unpredictable
nature of RES and the fluctuating power requirements of
loads, batteries often undergo frequent deep cycles and
irregular charging patterns, leading to a shortened lifes-
pan and increased replacement costs [1]–[3]. To mitigate
these challenges, Hybrid Energy Storage Systems (HESS)
have emerged as a viable solution, reducing battery strain,
capacity, and overall system costs [4].

Managing the power dynamics of both batteries and
supercapacitors (SC) is essential to maximize energy con-
sumption and conservation in the Battery-SC model.
Aiming to increase battery lifespan by reducing peak cur-
rent needs and constant stress is a common objective in
HESS deployment [4], [5]. By minimizing peak current,
voltage drop is lessened, enhancing battery efficiency and
reducing overheating and dynamic stress [5], [6].

While fuzzy logic controllers (FLC) are widely used
in Battery-Hydrogen Storage Systems (HSS), their appli-
cation in RES with Battery-SC Systems is relatively
unexplored. FLC, known for its simplicity and insen-
sitivity to system changes, minimizes battery capacity
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loss significantly when compared to battery-only sys-
tems [7]. However, the challenge lies in optimizing FLC’s
membership functions (MFs), traditionally done through
time-consuming trial-and-error methods [8].

In this research, a novel control model for a PV-Wind
power system with Battery-SC is proposed. The control
approach aims to reduce the battery’s fluctuating active
strain and high current demands while ensuring opti-
mal state of charge for the supercapacitor (SOCsc) [8].
Employing a Sugeno-type FLC, known for its efficiency
and robustness, the model adjusts the power flow between
the battery and SC based on real-time power needs and
SOCsc. To enhance FLC’s performance, the Grey Wolf
Optimization (GWO) algorithm is employed, optimizing
the FLC’s membership functions to decrease high battery
current.

Simulink is utilized to compare the proposed system’s
performance against traditional systems, using a rural
household load profile. The results showcase the effi-
ciency of the proposed control model, demonstrating its
potential in significantly improving the performance and
lifespan of Battery-SC systems. This paper presents the
Simulink models of the suggested system, highlights the
GWO optimization results, and compares the outcomes
with conventional systems, shedding light on the promising
future of optimized Battery-SC RES applications.

2. System Modelling and Components

A solar panel, a wind turbine, and a battery (lithium-
ion) are all part of the proposed hybrid system, which
also includes an SC. As indicated, all of the elements are
coupled to a voltage unified DC bus [9].

2.1. Wind Turbine Modelling

In this study, we’ll use a wind turbine powered by a
permanent synchronous generator (PMSG). The wind tur-
bine’s power and rated wind velocity are 300 W and 13 m/s,
respectively. The maximum wind velocity is 18 m/s, with
a beginning wind velocity of 3 m/s. The maximal power
production is 800 W [10].

The output power of a wind turbine can be stated as
follows using aerodynamic theory:

P = 0.5ρπR2V2C mwp(λ, β) (1)

where P is the resultant power of a wind turbine generator.
The air density, wind speed and blade radium are repre-
sented by, R, and Vw, discretely. The power coefficient (Cp)
is defined as:

Cp(λ, β) = 0.73(151/λ − 0.58β − 0.002β2.14

−13.2)e−18.4/λ (2)

where:

λ = 1
1/((λ − 0.02β) − (0.003/β3 + 1))

(3)

In Matlab, a fluctuating wind of 13 m/s is generated
and shown. The wind turbine’s output power under MPPT
control is displayed [11].

2.2. PV Array Modelling

A solar array is formed by connecting numerous parallel
and series solar cells. The following equation is used to
compute the short-circuit current for every solar cell [11]:

ISC = ISC0(G/G0)a (4)

where Isc and Isc0 are the short-circuit currents, G and G0

are standard solar radiation, respectively.
The PV cell’s open-circuit voltage is:

V0c = Voc0

1 + βln G
G0

(
T0

T

)α

(5)

where V0c and Voc0 are the open-circuit voltages under
average and normal solar energy G and G0, respectively,
and T is the PV cell temperature. β is a technology-specific
coefficient for PV cells that depicts temperature nonlin-
ear effects. Using cells arranged in series (Ns) and cells
arranged in parallel (Np), the highest power from the solar
array can be written as [12]:

Pmax = NpNs
(V0c0/nkTq) − ln ((V0c/nkTq) + 0.72)

1 + (V0c0/nkTq)

× 1 − Rs
V0c/Isc

V0cIsc (6)

Because both the wind turbine and the solar array create
power, the collective power produced may be estimated
by summing them together. Furthermore, we presume a
constant load need of 1 kW. As a result, the power disparity
between produced and needed power by load is P [13].

�P = PWP + PPV − PL (7)

where PWP, PPV , and PL are the power output of a wind
turbine, power of the solar array, and power demand of the
load, discretely [14].

2.3. Battery–SC Storage System

An SC, a bidirectional DC-DC converter, control cir-
cuitry, and a battery bank are all included in the proposed
system’s HESS, as shown in the Simulation of the solar-
wind system with Battery-SC system [15]. The Simulink
library contains the structure and details of the Battery and
Supercapacitor models. The Battery-SC system described
in this work uses the benefits of both high power density
and energy density storage to accomplish the necessary
performance [16]. However, combining the battery-SC as a
solitary source of power necessitates a sophisticated condi-
tioning circuitry [17]. Because the SC voltage varies greatly
because of its low energy density, the proposed Model’s
Battery-SC system is built in a partially active architecture,
with a bi-directional DCDC converter located adjacent to
the Supercapacitor to isolate the Supercapacitor from the
rest of the system [18].

The power electronic component is made up of a
DC-DC converter and control circuits [19]. This design
provides enough flexibility to implement a variety of con-
trol techniques as shown in Fig. 1. Furthermore, with the
employment of a single DC-DC converter, this design
provides a favourable trade-off between functionality and
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TABLE I: Proposed System’s Specifications

Component Rating Value

PV Power 1.2 kW
Wind system Power 300 W
Li ion battery Voltage 48 V

Capacity 300 Ah
Supercapacitor Voltage 45 V

Capacitance 500 F

intricacy of the circuit [20]. It is also necessary to manage
the power flow in both directions to properly link the
batteries and SCs. The System’s specifications are shown
in Table I.

The bidirectional half-bridge DC-DC converter can
operate in both buck and boost modes. It comprises of two
bi-positional switches constructed in a half bridge arrange-
ment using transistors S1/S2 and diodes D1/D2 [21]. The
converter’s high and low voltage sides are interfaced to
the DC bus and the Supercapacitor, to enable for constant
functioning of the SC [22]. Power is transmitted from the
high to the low voltage side when the converter is in buck
mode (inductor current, iL > 0). Power is transmitted
from the low to the high voltage side (iL < 0) while the
converter is in boost mode. The following is a description
of the proposed system’s dynamic power balance, based on
Fig. 2:

PPV + Pbatt + P
′
SC + PLoad = 0 (8)

where PPV is the PV’s power generation, Pbatt is the bat-
tery’s power, Pload is the load’s power demand, and Psc0

is the SC power flow after the DC-DC converter’s power
conversion. The converter’s efficiency is less than 100% in
real-world operation.

As a result, the power shift from the SC to the DC bus
is written as expression (9):

P
′
SC = ηDCDC × PSC (9)

where PSC denotes SC’s power flow and ηdcdc denotes
the converter’s efficiency. The converter’s efficiency is pre-
sumed to be 100% in the context of this research.

As a result, (10) defines the amount of power needed by
the Battery-SC, ΔP, which is the difference between PPV

and Pload ’s output power:

�P = PPV − PLoad = Pbatt + PSC (10)

3. Control Strategy

The control strategy, which is based on current system
conditions, controls the HESS power flow. In order to
accomplish various objectives is frequently complicated
and calls for constant operation. Optimizing HESS con-
trol is essential for maximizing sustainability and energy
efficiency [23]–[28].

There are two different categories of control strate-
gies: traditional control techniques and modern control
techniques [29]. Rule-based controllers (RBC) and
filtering-based controllers (FBC) are examples of tra-
ditional control systems that are simple and easy to
implement since they don’t need intensive processing.
However, they tend to be rigid and sensitive to parameter
changes [30]. Because they develop the dynamic behavior
without needing an accurate description of the system,
modern control techniques like the FLC are more
dependable and effective than traditional control strategies
[31]. The MFs of FLC, on the other hand, are normally
calculated through trial-and-error, which is ineffective and
a lengthy process.

To summarize, REPS with Battery-Supercapacitor
HESS frequently use traditional control mechanisms like
RBC and FBC. In this study, the proposed control
approach is compared to two common traditional control
systems (RBC and FBC). All models with SC have a SOCsc
operating range of 50% to 100% to enable the use of 75%
of the total SC energy [32].

3.1. Rule-Based Controller

Based on a set of guidelines, the RBC determines how
much power is distributed between the SC and battery. It is
easy to implement because it does not necessitate complex
processing. RBC, on the other hand, is extremely sensitive
to parameter variations due to its pre-defined rules and

Fig. 1. Hybrid energy storage and renewable energy system.
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Fig. 2. Simulation inputs: (a) Solar power output, (b) Wind speed, (c) Output from wind turbine, (d) Load profile, (e) Power variation between
Power generation and Load demand.

procedures. An RBC is created and depicted as a dead-
zone function using data from [33]. Whenever the current
of the battery is between the ib1 and ib2 thresholds, the
battery is the sole way to supply the load requirement.
when the ib1 or ib2 threshold is reached for battery current
demand, the extra current demand is divided between the
SC and the battery according to the K1 or K2 ratio [33].

3.2. Filtration Based Controller

The FBC splits the active elements of the power demand
into low-frequency and high-frequency parts using a filter.
This method is easy and requires little computing power.
A high pass filter (HPF)-based FBC’s structure was bor-
rowed from [34]. The HPF divides the power requirement
into high-frequency (PHF) and low-frequency (PLF) com-
ponents, with the PHF and PLF fetched by the battery and
SC, discretely.

3.3. Proposed Control Strategy

Fig. 3 depicts the framework of the suggested control
method, which attempts to reduce the battery’s active ten-
sion and high current demand. The energy management
device in the control strategy is a fuzzy logic controller
(FLC). The Grey Wolf Optimization optimisation (GWO)

technique is used to optimise the FLC’s membership func-
tions (MFs) in order to obtain optimal performance. The
next sections discuss the structure of the suggested control
strategy.

3.4. DC Bus Configuration and Optimization
The voltage on the DC bus is managed using the princi-

ple expressed in Fig. 3. The PI device decides the reference
current of the DC bus Idcref to regulate the bus voltage at
Vref = 400 V.

The EMS generates the reference currents for batter-
ies and SCs (Ibatref and Iscref , correspondingly). These
reference currents makes the DC bus voltage to remain
static irrespective of load conduct or fluctuations in power
output. When a fault develops on an element such as
SOC, power interruption, or solar irradiation variation,
the batteries and/or SCs make sure that the DC bus voltage
is regulated. The collective reference currents, Iscref and
Ibatref , should be same as Idcref at all times:

Idcref = Iscref + Ibatref (11)

The following equation can be used to simulate the
function of a DC bus:

Cdc dvdc/dt = Iscdc + Ibatdv − Iload (12)
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Fig. 3. Proposed control strategy.

The DC currents of SCs, batteries are represented by
ISCdc, Ibatdc, respectively. The load current is represented
by ILoad . Cdc is the capacity of the central bus that allows
a similar DC bus voltage to be imposed on the load and
all other inputs. The power oscillations from the chosen
stationary converters are filtered by these capacitors.

3.5. Low Pass Filter (LPF)

PV power production and load needs are very variable in
actual operation. To meet the demands of the traditional
system’s highly fluctuating ΔP, the battery is put under
stress. The extremely variable battery current results in
high internal heat of the battery, which would decrease
efficiency and increase internal resistance [4], [6]. LPF is,
therefore, used to break down the ΔP into PHF and PLF

in order to lessen the active load on the battery. The PHF

is the mismatch between ΔP and PLF , while the PLF is the
resultant of LPF.

PLF = lowpassfilter(�P) (13)

PHF = �P − PLF (14)

While the SC should ideally handle the PHF , a highly
variable power demand, the battery should ideally handle
the PLF . This procedure lessens the dynamic stress on the
battery by preventing it from delivering the high frequency
components. The PLF is sent to the FLC to achieve battery
high current attenuation after the LPF filtration.

3.6. Fuzzy Logic Supervisor (FLS)

FLC’s goal is to lower battery high current while con-
tinuously taking the SOCsc into account. The Sugeno
type fuzzy system, which is utilized in this study, is an
effective system for computing that functions best with
optimization and adaption [35].

The PLF and the SOCsc are the FLC’s two inputs,
as depicted in Fig. 3. The power sharing ratio, which is

calculated using the real-time data, is the FLC’s output.
The inputs’ MFs have trapezoidal forms. In Fig. 4, the
MFs of the FLC are presented.

The five MFs present in the input variable PLF are
positive high (“PH”), positive medium (“PM”), low (“L”),
negative low (“NL”), and negative high (“NH”). The
HESS must meet the positive PLF , which is the power
demand, and the negative PLF, which is the excess power
that must be taken in by the battery-SC system. Contrarily,
the input variable SOCsc only has three MFs, denoted by
the letters High (H), Medium (M), and Low (Low). The
output variable α, meanwhile, has five MFs: PH, PL, zero
(“Z”), NL, and NH. The power ratio that will be delivered
to and taken-in by the SC is indicated by the positive and
negative membership functions, respectively.

Table II includes a list of FLC regulations. Regardless
of the SOCsc situation, when the PLF ’s power demand
is “L,” the power sharing ratio (α) is “Z,” as the feable
power demand places low strain on the battery. To lower
the battery’s peak current demand whenever the PLF is
positive, α is fixed according to power demand intensity
and SOCsc. To restore the SC’s charge when the PLF is
negative, α is determined with extra power and SOCsc
level. Equation (15) can be used to calculate how much
electricity the SC and PH will share:

PH = αPLF (15)

PHF and PH are added to determine the overall power
that the SC will supply, or P∗

SC .

P∗
SC = PHF + PH (16)

The bidirectional DC-DC converter in the proposed
system would control SC power flow in accordance with
P∗

SC . Therefore, it is anticipated that the battery will deliver
the power discrepancy between P∗

SC and ΔP as specified in
expression (17):

Pbatt = �P − P∗
SC (17)
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(c)

Fig. 4. Membership functions: (a) Input 1: PLF, (b) Input 2: SOCsc, (c) Output: α.

TABLE II: Rules of FLC

ΔP
PH PL L NL NH

SOCSC H PH PL Z Z Z
M PL PL Z NL NL
L Z Z Z NL NH

3.7. Grey Wolf Optimization (GWO) Algorithm

The Grey Wolf Optimization approach is based on
the transverse orientation mobility of ants in environ-
ment. While exploring their environment, real ants leave
pheromone trails that direct each other to resources. Sim-
ilarly, the simulated ants record their positions and the
quality of their solutions in the same way so that more ants
find better solutions in subsequent simulation iterations.
Therefore, during each flight, Ants function as particles
that change their positions and velocities based on their
own Abest as well as the collective group’s Gbest experience
(iteration).

The amount of variables within every problem decides
the size of the particles. A fitness function calculated at

the particle’s current position determines the quality of the
solution for each particle.

The FLC may be optimised based on the projected data
since the electrical load, and RES can both be forecasted.
In this investigation, the load demand and RES profile
presented in Figs. 2d and 2e are taken as the baseline
model. The anticipated RES data and load demand are
used to optimise the MFs of the FLC’s input variables.
Four points together form a complete trapezoidal MF. The
first (left) MF and the last (right) MF of a variable with
more than two trapezoidal MFs each have just two tuning
points. As a result, the equation can be used to determine
the number of points that are optimal for a given variable,
n (18):

n = (4 × mf ) − 4 (18)

where mf is the number of MF, in this case. PLF and
SOCsc, two input variables, have five and three MFs,
respectively, in the suggested control approach. Because
of this, the GWO algorithm must optimise 24 points alto-
gether. In light of this, A 24-dimensional particle can be
used to represent an FLC or solution. The population size
and the number of iterations are user-defined in the GWO
procedure, as shown in Fig. 6.

3020100 40 50 60 70 80
5.7

5.75

5.8

5.85

5.9

5.95

6

6.05

No. of Iteration

Fi
tn

e
ss

V
a

lu
e

(A
)

Fig. 5. GWO algorithm’s convergence curve after 80 iterations of optimization.
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TABLE III: Model Configurations

Model Energy source Energy storage
system

Control strategy

I PV/Wind Battery/SC RBC
II PV/Wind Battery/SC FBC
III PV/Wind Battery/SC FLC/GWO (Proposed

control strategy)

3.8. Fitness Function

The battery’s high discharge current causes extreme
damage since it raises the battery’s temperature and the
pace at which positive active mass sludges. The major goal
is to reduce the battery high current while keeping the SC
above 50% of SOCsc. The system’s cost can be decreased
while also increasing battery efficiency and lifespan due to
the reduction in battery peak current [35]–[37]. The fitness
function, f, evaluates the solution’s fitness in GWO. In this
study, the minimum battery current, denoted by f(x), is
defined in (19):

f (x) = min(Ibatt) (19)

where Ibatt stands for the battery current. The highest
battery current of every function is noted for the GWO
algorithm to find the best one in each iteration.

4. Results and Discussion

4.1. GWO Algorithm

Based on the load profiles depicted in Fig. 2, GWO
optimises the MFs of FLC. The flowchart for GWO
optimization is shown in Fig. 6, where a population size
of 20 ants and a total of 80 iterations are specified.
Each 24-dimensional particle represents an FLC model.
Everywolfin, the population is regulated using the fitness
function, which is described in (19). After each evaluation,
the ant’s individual best (Abest) and overall best (Gbest) are
updated.

The fitness value versus iteration count graph is shown
in Fig 5. Using a randomly generated solution, the first
iteration’s Gbest is 6.0389 A. As iterations go longer, the
fitness value gets lower. The Gbest is maintained at 5.718
A through the 80th iteration after being decreased to that
value at the 60th iteration. By the time the optimization
procedure is complete, the top choice (the particle with
Gbest of 5.718 A) has been converted into an FLC model,
as shown in Fig. 4.

4.2. Simulation

Simulink is used in this study to build the three mod-
els stated in the Table III. The solar-wind system with
battery-SC model and RBC is referred as Model I. The
Solar-wind system with battery-SC model and HPF-based
FBC is named as Model II. The hybrid PV-wind system
with battery-SC model and the suggested control approach
makes up Model III. Table III depicts the configuration of
the control strategies. The power source and load profiles
are modelled and adapted to all models, as shown in Fig. 2.

A number of battery metrics are assessed, including
average battery SOC (SOCbatt average), peak battery current

A

Fig. 6. Flowchart of GWO process.

(Ibatt peak), peak battery power (Pbatt peak), and final battery
SOC (SOCbatt final). Lower battery stress, greater battery
efficiency, and a decrease in internal voltage are all effects
of reducing Ibatt peak and Pbatt peak [4], [5]. In this study,
the SOCbatt average and SOCbatt final are examined. Higher
SOCbatt average and SOCbatt final would increase the life of
battery and decrease system LPSP.

|ΔP| stands for the absolute rate of change of power in
a time step of dt, expressed in Watt per second (W s1).
Equation (20) can be utilised to calculate |�P|:

|�P| = |(P(t) − P(t − �t))/�t| (20)

where P(t) denotes battery power at time t, P(t − �t)
denotes battery power at time t − �t, and �t is the study’s
1 s time step. In other words, |ΔP| can be used to estimate
the battery power’s amount of fluctuation, with a greater
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Fig. 7. Battery power (a) Battery power—Model I, (b) Battery power—Model II, (c) Battery power—Model III.

TABLE IV: Summary of Battery performance

Battery parameters Value Model I Model II Model III

Ibatt_peak Current (A) 6.053 6.152 5.718
Attenuation (%) – −1.02 5.9

Pbatt_peak Power (W) 293.6450 296.5788 275.4768
Attenuation (%) – −1.01 6.19

SOCbatt_average SOC (%) 67.3008 66.7895 67.2767
Increase (%) – 0.76 0.4

SOCbatt_final SOC (%) 47.8976 47.7657 47.8734
Increase (%) – 0.01 1.15

|ΔP|max Rate (ws-1) 24.1243 8.7685 7.4899
Attenuation (%) – 74.17 77.01

|ΔP|mean Rate (ws-1) 0.346 0.017869 0.01567
Attenuation (%) – 95.01 95.59

value indicating a higher level of variation. Low levels of
battery power fluctuation can boost the battery’s efficiency
and life expectancy.

This study computes the battery power’s maximum |ΔP|
|ΔPmax| and mean |ΔP| |ΔPmean| to assess the battery’s
level of dynamic stress.

The simulation model of all battery profiles simulation
are shown in Figs. 7a–7c. Table IV compares and sum-
marises each model’s battery performance.

The Ibatt peak and Pbatt peak are decreased for Model II,
according to Fig. 7b and Table IV, but the battery still
endures a significantly variable power demand. As the
SC expends most of its energy to deliver the load, the
SOCbatt average and SOCbatt final are increased by 0.76 per-
cent and 0.01 percent, discretely. These improvements are
the largest of all the models. Table IV and Fig. 7b for
Model II demonstrate a notable decrease in the active
strain of the battery but only a marginal improvement in
Ibatt peak and Pbatt peak. This is due to the FBC, which
was created to lessen the dynamic load on the battery

without taking peak demand into account. However, the
SOCbatt average and SOCbatt final are not significantly devel-
oped (0%), as the SC only absorbs the highly fluctuating
low power components.

As shown in Fig. 7, the battery power profile for Model
III is noticeably smoother than that of Models I and II.
SC compensates for the difference between ΔP and battery
power.

As previously stated, one of the suggested model’s
objectives is to attenuate the battery’s peak demand. The
maximum battery current in Model III in the simulation is
5.718 A, which is identical to the best because the GWO
optimization and simulation use the same energy source
and load profiles.

Due to the FLC’s inclusion in the suggested control
plan, the SC delivers to satisfy the high demand while
continuously taking its SOC level into account. As a result,
when compared to Model I, the Ibatt peak and Pbatt peak are
decreased by 5.9% and 6.19%, discretely.
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Since the SC expends the majority of its energy achiev-
ing the control strategy’s objectives, the SOCbatt average and
SOCbatt final are enhanced by 0.4% and 1.15%, discretely
which is significantly less than Model I.

By determining the absolute value of the total ampere-
hours (amount of charge) travelling to and from the SC,
|Ah|SC, it is possible to estimate the SC utilisation in the
HESS. The SC current is integrated over time to determine
the SC ampere-hours.

The SOCsc and |Ah|SC of Models I, II, and III are
shown in Fig. 8 during the simulation. The level of battery
use decreases as SC utilisation increases. As a result, by
raising the SC utilisation level, the system’s internal losses
can be decreased. By boosting SC use, the system can be
made smaller. This is because a significant portion of the
resultant current passes via the SC, which has a lower
internal resistance and, as a result, causes the battery to
heat up less and last longer.

According to Fig. 8b, Model I’s final SOCsc is same as
the required minimum SOCsc of 50%. On comparison,
Model I performs the poorest in terms of SC utilisation
and battery active strain reduction, meaning that it does
not properly use the SC. It also consumes the majority of
the SC energy. The result is that Model II’s total |Ah|SC is
32.65% less than Model III but 487.86% more than Model
I. Only 0.56% net SOCsc is used during the simulation,
resulting in a final SOCsc of Model II of 92.69%.

In other words, Model II’s SC is not fully utilised.
In Model III, the final SOCsc is kept at a greater level
than in Model I while being kept 7.45% over the required
minimum SOC of 50%. In compared to the other models,
Model III has the greatest total |Ah|SC, with Model I and
Model II’s respective SC utilisation levels being 687.122%
and 32.65% lower.

In other words, the suggested technique can run the
SC under the specified SOC range and effectively utilise
the SC’s constricted energy limit to produce promising
performance.

The suggested system (Model III) is tested using the
load profile depicted in Fig. 2b and various weather condi-
tions. As would be expected, the scenario’s most important
changes are the decrease in Peak demand and strain level
of the battery.

Regardless of the weather and load profile, the simula-
tion results demonstrate that the suggested method greatly
attenuates the battery’s active strain ΔPmean by more than
80% when compared to Model I. In the meantime, the
decrease in battery’s high need depends on the stress level

of ΔP, which is established by the power source and the
load demand. With the high ΔP and low PV output or
peak load demand, the battery peak demand can be signif-
icantly reduced [38].

5. Conclusion

In conclusion, this research underscores the pivotal role
of innovative control strategies in enhancing the longevity
and efficiency of energy storage systems, particularly in the
context of modern urban energy infrastructures reliant on
renewable sources. By addressing the challenges posed by
the unpredictable behaviour of renewable energy sources
and varying load demands, the study presents a significant
step forward in sustainable energy solutions.

The proposed control approach, integrating a Low-Pass
Filter (LPF), Fuzzy Logic Controller (FLC), and Grey
Wolf Optimization (GWO), stands out as a pioneering
method to tackle the detrimental effects of deep cycles
and irregular charging patterns on batteries. Through the
meticulous optimization of FLC’s membership functions
using GWO, the system achieves optimal peak current
attenuation, reducing the strain on batteries substantially.
The simultaneous monitoring and adjustment of the super-
capacitor’s charge levels further contribute to maximizing
the operational life of the entire hybrid energy storage
system.

Comparative analyses against traditional control
techniques, such as Rule-Based Controller and Filtration-
Based Controller, demonstrate the superiority of the
proposed method. Substantial reductions in peak current
and high power requirements not only alleviate strain on
the battery but also significantly enhance the utilization
of the supercapacitor. This improvement not only
augments the system’s efficiency but also mitigates replace-
ment costs, contributing to the long-term sustainability of
energy storage solutions.

In essence, this study exemplifies the potential of inte-
grating advanced control methodologies and optimization
techniques in shaping the future of energy storage sys-
tems. By extending the operational life of batteries, this
research paves the way for more reliable, cost-effective, and
environmentally friendly energy infrastructures, fostering
a greener and more sustainable future.
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