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ABSTRACT

This research paper explores the application of machine learning techniques
to classify memory-based injection attacks. By leveraging process list
data, the study focuses on distinguishing between injected and non-injected
processes. Through feature engineering and training a machine learning
model, the research aims to enable accurate identification of memory
injection, aiding in proactive threat detection and mitigating the risk of
malicious activities in computer systems.
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1. Introduction

With the rapid advancement of cyber threats, detecting
and mitigating sophisticated malware attacks has become a
critical challenge for modern security systems. One preva-
lent technique employed by attackers is memory injection,
which involves the malicious insertion of code into a run-
ning process’s memory space. Memory injection attacks
evade traditional signature-based detection methods and
exploit the trust between processes, making them particu-
larly challenging to detect.

1.1. How to Find Malicious Code or Malware?
1) Malicious code running in its own process
2) Malicious code injected into an actual legitimate
process

When a machine gets infected never turn off the memory,
the data will be lost since the malware tries to hide itself
and is running on the volatile memory. So, when setting
up the malware lab, we will isolate the instance from the
host machine and take an image of the memory instance by
saving the whole .raw file for the live system and the .vmem
file from the Virtual Machine, we can use WinPmem tool
to extract the raw file which will later be used to analyze
with Volatility tool on Linux machine/OSx.

Inside a running process, we can find whether the pro-
cess is accessing a file, registry key, DLLs, etc. Networking
connections show the live connections from the Virtual
machine to the outside world, it can also be the Host
machine, so it is recommended to isolate the test environ-
ment.

Memory-based injection attacks pose a significant
threat to computer systems, when it comes to memory
injections, the attacks are mainly focused on volatile mem-
ory. It lives in a computer’s RAM memory. The main
attackers are trying to avoid files being written to disk
is that most of the anti-virus software/security software
programs concentrate on scanning for malicious files and
artifacts written on the disk, on the other hand, memory-
based attacks are engineered to bypass a system’s security
software and also some sophisticated metamorphic mal-
ware/viruses remain unnoticed because the best way to
remain in the dark is to just evade the security system or
act like the system.

Machine learning algorithms have emerged as powerful
tools for enhancing malware detection capabilities. ML
techniques leverage the power of data analysis and pattern
recognition to identify and classify malicious activities.
The application of ML in memory injection detection
holds great promise in providing proactive defense mech-
anisms against these elusive attacks making it a viable
option in an ever-evolving malware ecosystem.

Our research paper focuses on the detection of mem-
ory injection attacks using ML techniques. The primary
objective is to explore and evaluate the effectiveness of
two ML algorithms in detecting and classifying processes
that are injected from those that are not injected. Using
ML methods, we aim to develop robust and proactive
approaches to improve the security of systems against these
sophisticated memory injection attacks.

The paper will present a comprehensive review of exist-
ing literature and state-of-the-art techniques related to
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memory injection detection and ML-based malware detec-
tion in general. We will examine different ML algorithms,
such as random forests, and K-nearest neighbors, in the
context of memory injection detection. Furthermore, we
will explore the relevant features and memory access pat-
terns that can be utilized for effective feature engineering
and model training.

To evaluate the performance of the proposed ML-based
memory injection detection approach, we will employ
real-world datasets containing both normal and injected
process instances. We will compare and analyze the accu-
racy, precision, recall, and F1 scores achieved by the
two different ML algorithms. Hopefully, the findings
from this research will contribute to the advancement of
memory injection detection techniques and provide valu-
able insights into the effectiveness of ML algorithms for
enhancing system security. By identifying and mitigating
memory injection attacks in real time, organizations can
fortify their defenses and proactively safeguard critical
data and resources against evolving cyber threats.

2. Literature Survey

2.1. An Architectural Approach to Preventing Code
Injection Attacks

This research paper [1] proposes a systematic approach
to mitigate code injection attacks. The research focuses
on designing and implementing a secure architectural
framework that includes security measures such as
input validation, secure coding practices, and runtime
monitoring. By adopting this architectural approach,
organizations can strengthen their systems against code
injection vulnerabilities and significantly reduce the risk
of successful attacks, enhancing overall system security.
his approach offers proactive defense against vulnerabil-
ities and strengthens overall system resilience. However,
successful implementation relies on careful adherence to
the recommended security measures, considering the sys-
tem’s specific architecture and constraints. Additionally,
the impact on system performance and overhead should be
considered when adopting the proposed approach.

2.2. DeepLog: Anomaly Detection and Diagnosis from
SystemLogs through Deep Learning

This research paper [2] introduces DeepLog, a system
that leverages deep learning techniques for anomaly detec-
tion and diagnosis from system logs. By analyzing log data
using deep learning models, DeepLog can effectively iden-
tify abnormal patterns and provide insights into potential
system issues. This approach offers a promising solution
for improving system monitoring and troubleshooting,
enabling organizations to proactively address anomalies
and enhance system reliability and performance. It offers
advantages such as automatic learning of complex pat-
terns, real-time insights for prompt troubleshooting, and
the ability to handle high-dimensional and unstructured
log data. However, limitations include the dependence
on quality training data, resource-intensive computations,
and the interpretability of deep learning models. Over-
all, DeepLog presents a valuable approach for enhancing

system monitoring and troubleshooting, but careful con-
sideration of these limitations is necessary for effective
implementation.

2.3. Ten Process Injection Techniques: A Technical Sur-
vey of Common and Trending Process Injection Techniques

This survey blog [3] provides an overview of ten com-
mon and trending process injection techniques used in the
field of cybersecurity. It aims to offer technical insights
into various methods employed for injecting code into
processes, enhancing the understanding of process injec-
tion vulnerabilities and their potential mitigation. Some
commonly used techniques include DLL Injection, which
allows arbitrary code to be injected stealthily but can
be detected through DLL loading activities. Code Cave
Injection utilizes unused memory regions for flexibility
but requires finding suitable code caves. APC Injection
leverages asynchronous procedure calls for evasion but
can be hindered by APC monitoring. AtomBombing
enables high-privileged code execution, bypassing security
mechanisms, but demands administrative privileges. Pro-
cess Doppelganging manipulates process images to evade
detection achieve stealth¨ but can be detected by pro-
cess creation monitoring. TLS Callback Injection offers
covert injection through TLS callbacks but may not
be applicable in all processes. Reflective DLL Injection
avoids file-based detection by loading DLLs from memory
but relies on existing malicious code. Process Hollowing
replaces a target process’s memory space to evade detection
but requires administrative privileges and may introduce
stability issues. Early Bird Injection exploits process ini-
tialization but relies on precise timing. Thread Execution
Hijacking redirects thread execution flow for flexibility but
demands in-depth knowledge of the target process. This
survey provides insights into the strengths and weaknesses
of these process injection techniques, aiding in understand-
ing their effectiveness and potential mitigation.

2.4. CODDLE: Code-Injection Detection with Deep
Learning

This research paper [4] proposes a deep learning-
based approach for detecting code injection attacks. By
leveraging deep learning techniques, CODDLE aims to
identify and classify instances of code injection in real
time. The method demonstrates promising results in accu-
rately detecting code injection attacks, offering improved
security against such threats. However, the effectiveness
of CODDLE may depend on the availability and qual-
ity of training data, as well as the complexity of the
code injection techniques employed. Further research and
experimentation are necessary to validate and refine the
performance of CODDLE in different real-world scenar-
ios. While CODDLE focuses specifically on code injection
attacks, DeepLog aims to detect anomalies from system
logs. CODDLE utilizes deep learning models to identify
and classify instances of code injection in real time, offer-
ing improved security against such attacks. On the other
hand, DeepLog uses deep learning algorithms to analyze
system logs and identify abnormal patterns indicative of
anomalous behavior or potential security breaches. Both
approaches demonstrate the potential of deep learning
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in detecting and diagnosing security threats. They rely
on large amounts of training data to train their mod-
els effectively. However, CODDLE’s effectiveness may be
influenced by the availability and quality of training data
for code injection attacks, while DeepLog’s performance
may depend on the comprehensiveness and accuracy of the
system logs.

2.5. A Basic Malware Analysis Process Based on FireEy-
eEcosystem

The paper [5] explores the detection of malicious
processes based on memory injection techniques using
machine learning. The authors address the increasing
threat of memory injection-based attacks, which involve
injecting malicious code into the memory space of
legitimate processes. Such attacks can evade traditional
antivirus systems and pose a significant challenge to secu-
rity analysts. The paper focuses on developing a machine
learning-based approach for identifying and classifying
processes affected by memory injection.

The study utilizes a dataset of process information
obtained from a controlled environment. It includes both
normal processes and processes infected with various
memory injection techniques. The authors employ several
feature extraction techniques to capture meaningful infor-
mation from the process data, including the number of
modules, imported functions, and memory regions.

They evaluate the performance of different machine
learning algorithms, such as Decision Trees, Random
Forests, K-nearest neighbor (KNN), and Gradient Boost-
ing, using metrics like accuracy, precision, recall, and
F1-score. Additionally, they compare the results with tra-
ditional signature-based antivirus systems to assess the
effectiveness of the proposed approach.

The findings indicate that machine learning algorithms,
particularly Random Forests, and KNN, outperform sig-
nature based methods in terms of detection accuracy. The
models achieve high precision and recall rates, demonstrat-
ing their capability to identify malicious processes affected
by memory injection techniques. The authors highlight the
significance of feature engineering in improving classifica-
tion performance.

The paper concludes that machine learning techniques
show promise in detecting memory injection-based attacks.
The proposed approach provides a proactive and dynamic
defense mechanism against these types of threats. However,
the authors acknowledge the need for further research to
handle the evolving nature of attacks and the challenges of
real-time detection.

2.6. A Dynamic Windows Malware Detection and Pre-
diction Method Based on Contextual Understanding of
API Call Sequence
The authors of this paper [6] address the challenge of

detecting memory injection attacks, which involve inject-
ing malicious code into the memory space of legitimate
processes. These attacks are designed to evade traditional
security measures and can be used to carry out vari-
ous malicious activities. The paper focuses on utilizing
machine learning techniques to detect and classify memory
injection attacks effectively.

The study proposes a framework that combines static
and dynamic analysis to extract features from the process
memory. Static analysis involves examining the charac-
teristics of the code, while dynamic analysis monitors
the behavior of the process during runtime. The authors
extract features such as the entropy of memory regions,
system call sequences, and API function calls to capture
the behavior of the process.

They evaluate the performance of various machine
learning algorithms, including Random Forest, and
K-Nearest neighbor (KNN). The evaluation is based on
different datasets that contain both normal and injected
processes. The metrics used for evaluation include accu-
racy, precision, recall, and F1-score.

The results demonstrate the effectiveness of the pro-
posed approach in detecting memory injection attacks.
The machine learning models achieve high accuracy rates
and outperform traditional signature-based methods. The
authors highlight the importance of feature selection and
the combination of static and dynamic analysis for accu-
rate detection.

3. Objectives

3.1. Data Collection
In this step, we collect data from a local Windows

machine, as the primary target of memory injection attacks
are Windows systems. We create a new virtual machine and
then populate it with some basic applications that might
be targeted for memory injection attacks. Then we use a
shell script to collect the process list data which includes the
memory used by the process and the DLL files loaded by
it. This is first done for a clean process where the memory
injection is not done and then the same thing is done again
for the injected process. This is how data is collected from
a single system.

3.2. Data Preprocessing
In the dataset preprocessing phase, the raw data will be

transformed into a suitable format for machine learning
analysis. This involves removing irrelevant data, han-
dling missing values and outliers, and applying feature
engineering techniques to extract meaningful features.
Additionally, data normalization or scaling methods will
be used to ensure comparable scales across features. The
preprocessing step aims to prepare the dataset for accu-
rate classification of memory injection techniques using
machine learning algorithms.

3.3. Model Selection
After preprocessing the dataset, the next step is to select

a suitable machine learning algorithm for the task of clas-
sifying memory injection techniques. Two commonly used
algorithms for classification tasks are Random Forest and
K-Nearest neighbor (KNN).

Random Forest is an ensemble learning algorithm that
combines multiple decision trees to enhance classification
accuracy. It works by constructing a multitude of decision
trees and aggregating their predictions to make the final
classification. Random Forest is robust to noise and can
handle high dimensional data effectively.
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On the other hand, K-Nearest Neighbors (KNN) can be
a suitable model for memory injection classification due
to its ability to capture non-linear relationships and create
localized decision boundaries. In the context of memory
injection detection, where complex patterns may exist,
KNN’s flexibility in adapting to local data characteristics
can be advantageous. Additionally, KNN provides inter-
pretability by associating predictions with neighboring
instances, aiding in understanding classification decisions.
Its easy implementation and robustness to irrelevant fea-
tures make it a convenient choice for quickly building a
baseline model without extensive feature engineering. The
choice between Random Forest and KNN depends on
the specific characteristics of the dataset and the require-
ments of the classification task. Random Forest is suitable
when there are multiple features and potential interactions
among them. It is also useful when dealing with noisy
or missing data. KNN, on the other hand, is effective in
handling high-dimensional data and can generalize well
even with a smaller dataset as the need for a neighbor can
be as less as 1.

3.4. Feature Engineering

Extract meaningful features from the process list that
can help the machine learning algorithm distinguish
between injected and non-injected processes. The way this
will be done in this project will be by using the used
memory part of the extracted data list and the loaded DLL
files. Both will be used to derive a meaningful relation
and thus help the machine learning model to distinguish
between injected and non-injected processes.

3.5. Model Evaluation

During the model evaluation phase, the performance of
the trained model is assessed using metrics such as accu-
racy, precision, recall, and F1-score. Accuracy measures
the overall correctness of the model’s predictions, while
precision and recall evaluate its ability to correctly classify
positive instances and detect true positives, respectively.
The F1 score combines precision and recall into a single
measure to provide a balanced evaluation. By analyzing
these metrics, researchers can gain insights into the model’s
strengths and weaknesses, identify areas for improvement,
and assess its suitability for classifying memory injection
techniques.

4. Machine Learning Method

4.1. Creating a Safe and Effective Analysis Environment

Malware is software that is explicitly designed to per-
form some tasks without the knowledge of the user using
the system. This means that it is generally a bad idea
to let malware run on the same PC on which you send
e-mails to your friends, do your online banking, and write
papers for security conferences. One way to solve this
problem is to isolate the environment where the malware
would be executed. Isolation should be both on the storage
level and network level. At the storage level, the malware
could have the potential to spread itself to other partitions
without our knowledge, and at the network level, it might

try and connect to the internet, and try and access the
host machine from which the environment is supposed to
be isolated. Although the malware is written by us and is
unable to carry out above said actions, it is always better
to be vigilant when dealing with malware. These machines
should have a standardized software build that can easily
be restored from a backup image after some piece of mal-
ware has finished destroying the system. One such solution
would be to use virtual machines to isolate the execution
environment. There are several software products that can
be used to create virtual machines. Virtual Box from Oracle
is currently our favorite for malware analysis by virtue of
its ability to create a tree of snapshots that capture system
state at various times and are free to use. These snapshots
can be used to easily revert to a previous system state where
the malware was not injected at all and try and redo the
whole injection if things go south.

We have used a virtual box to create 2 new isolated
environments. We made sure that both these systems were
deployed on an external hard disk rather than an inter-
nal one. The first system was a Windows machine with
Windows 10 64-bit installed, and around 50 GB of storage
allocated for its entire use. This is the target machine where
the Memory injection will happen. The second system was
a 64-bit Kali Linux with 40 GB of allocated memory.
This is the machine that serves the requests generated by
the Windows machine, if any, and acts as the attacking
machine. We create an isolated network containing only
these two systems and that is not connected to the internet.
For this, we created a new Virtual Box Host-only Ethernet
adapter with the Kali Linux server serving all the requests
sent by the Windows machine. This helps in isolating the
environment from the host machine network and thus from
the internet. To send back responses for the requests sent
by the Windows machine we use INetSim, which basically
responds to every request with a fake response page. This
makes sure that the malware will get some response instead
of getting nothing, which might cause the malware to
stop executing. Basically, this enables the malware to think
that it is still connected to the internet and continue its
execution as designed whilst keeping the network isolated
as well (see Fig. 1).

4.2. The Malware

Although there were many malwares available that got
the job done, we wrote our own malware that simply
does what is needed by us and nothing else. We used
C++ to write the malware with just a main function, as
there is not much the malware will be doing. First, the
malware opens the process that needs to be injected. This
process can be written into the script where the script
loads all the currently available processes on the machine
using the ‘CreateToolhelp32Snapshot’, from which the
required process could be selected. We on the other hand
used Process Hacker 2 in order to get the process ID
of the process and manually type it into the malware’s
codebase. This was done to ensure that the malware is
fully under our control and does not go rogue. Also
using Process Hacker 2 we can continuously monitor the
behavior of the process and see the effect of the mem-
ory injection in real-time. Next, the malware allocates the
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Fig. 1. High-level design.

memory to the process using the ‘VirtualAllocEx’ function,
this allocates memory within the target process. You can
increase the allocated memory by specifying a larger size.
Once the memory is allocated to the process the malware
copies the desired payload into the memory allocated. This
is done using the ‘WriteProcessMemory’ function. The
payload will be injected into the target process and exe-
cuted. The payload in our case was simply a shell code for
a reverse TCP connection to the Kali Linux machine. This
shell code was generated using the Metasploit Framework.
We also used ‘LoadLibrary’ to load more DLLs and adjust
the process memory. Finally, we execute the payload shell
code using the ‘CreateRemoteThread’ function, which cre-
ates a thread to execute the code. Once all of the mentioned
steps are done, we release all the resources and terminate
the thread. This is then converted into an executable and
executed on the target Windows machine.

4.3. Data Extraction

Data for the machine learning models to learn and
extract a detection pattern is to be collected from a Win-
dows machine. We wrote a Windows power shell script
that extracts and prints all the currently running processes
along with their allocated memory, process ID, and loaded
DLL files. We also added a target value named memory
injection which is initially set to False for all the processes.
First, the script is executed with the processes such as
Notepad, Chrome, Word, and Powerpoint open, these pro-
cesses will act as targets for our memory injection. Then
the malware is executed with the process ID of the target
processes and the shell script is run once again to gather
the same parameters of the same processes. But in this
case, we label the memory injection value to be True as
these processes have undergone process injection. This is
done through around 7 processes, and this is how data is
collected from a single system.

4.4. Process Data

Processing the data is an important part of machine
learning as the model should specifically feed only the data

that it needs to analyze. Preprocessing our data requires
several steps. In the first step, we remove all the unneces-
sary words that are in the collected data. This was due to
the structure of our PowerShell code. In the next step of
preprocessing, we add the word NULL to all the processes
that do not have any of the DLL files loaded. This is just
good practice. The loaded DLL files are a continuous list of
paths to the DLL file being executed separated by a white
space. This data is of no use so we clean it up and make a list
with each of the loaded DLLs forming an element in the
list. This list is used to find the percentage of DLLs loaded
by the process, which is calculated by dividing the number
of DLLs loaded by each process by the total number of
DLLs loaded by the machine in during that session. This
parameter can also be replaced by the number of DLLs
loaded by the process directly, but we found taking the
ratio a better and more normalized feature than just the
number of DLLs. Finally, we convert data into a comma-
separated variable file with the order being process name,
process ID, memory usage, percentage of loaded DLLs,
and injection technique. Once the processing of data is
done, we can move on to the next step.

4.5. Develop Model

To implement the machine learning model to classify
memory-based injection attacks using methods like Ran-
dom Forest (RF) and K-Nearest Neighbors (KNN), the
following algorithm is proposed.

Firstly, the data set that is formed after the preprocessing
of data is used. The data set is then divided into positives
and negatives. Positives contain samples that are True for
memory injection and Negatives contain samples that are
False for memory injection. This is basically done to have
a small number of samples of processes that have been
injected for testing into training due to a limited number of
process data collected that were injected. Both the positives
and negatives are divided into testing and training sets.
The set of training sets from both positives and negatives
form the final training set and similarly group of test-
ing sets from both positives and negatives form the final
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testing set for the model. Feature engineering techniques
are applied to extract meaningful information from the
dataset, enhancing the quality of input features. Specially
the names of processes were factorized in order to pass
them as input for the models. Next, feature selection meth-
ods are employed to identify the most relevant features for
classification. Techniques like correlation analysis, infor-
mation gain, or recursive feature elimination are utilized to
select the optimal subset of features that contribute most
to the classification task (Fig. 2).

Random Forest is an ensemble learning algorithm that
combines multiple decision trees to improve classification
accuracy. It is well-suited for handling high-dimensional
data with complex interactions among features. In the
context of memory injection classification, Random Forest
can effectively capture patterns and relationships between
various process attributes and the corresponding injection
techniques. Its ability to handle noisy and missing data
makes it a robust choice for this task. Although we do not
have any missing data, we can say the data is noisy. Most of
the data that is collected simply is useless and the Random
Forest Classifier should correlate for interactions using
the very little data that is present in the process dataset
collected.

On the other hand, the KNN classifier is a powerful
machine-learning method that excels in both classification
and regression tasks. One of the key strengths of KNN lies
in its simplicity and intuitive nature. It is a non-parametric
algorithm, meaning it does not assume any specific data
distribution and learns directly from the training exam-
ples. This flexibility allows KNN to capture complex and
nonlinear relationships in the data. Additionally, KNN
is considered a lazy learning algorithm, as it does not
require an explicit training phase. Instead, it stores all
training instances and makes predictions based on the k
nearest neighbors to a given test point. This ability to
leverage the local structure of the data makes KNN robust
to outliers and noise. Moreover, KNN does not make
strong assumptions about the data, allowing it to work well
with both numerical and categorical features. Its simplicity,
flexibility, and ability to handle various data types make
KNN a popular choice in many real-world applications.
KNN makes perfect sense for our research as the malware
injected into all the processes is the same and thus will
increase all the process values almost equally. This gives
the classifier enough data or neighbors to classify a process
into infected or noninfected easily.

Both Random Forest and KNN have their own advan-
tages and considerations. Random Forest is known for
its ability to handle complex interactions and noisy data,
making it suitable when there are multiple features and
potential dependencies in the dataset. KNN, on the other
hand, includes its ability to capture non-linear relation-
ships, create localized decision boundaries, and provide
Interpretability.

In the classification of memory injection techniques,
Random Forest can capture the relationships between var-
ious process attributes and injection methods, while KNN
can create effective groups of neighbors to separate differ-
ent injection techniques based on the given features. The
choice between the two algorithms depends on the specific

characteristics of the dataset and the desired trade-offs
in terms of interpretability, computational efficiency, and
performance. Subsequently, separate models are trained
using RF and KNN algorithms on the training dataset.
Hyperparameters of the models, such as the number of
trees in RF or the number of neighbors in KNN, are
configured to ensure optimal performance. The models
are then evaluated using the testing dataset, employing
evaluation metrics such as accuracy, precision, recall, and
F1 score. Techniques like cross-validation may be applied
to validate the models’ robustness and prevent overfitting.
As it is a major concern in Random Forest Classifier.

Based on the evaluation metrics, the performance of the
RF and KNN models is compared, and the model with
higher accuracy and better classification performance for
memory-based injection attacks is selected.

By following this precise algorithm, we can effectively
implement the machine learning part of their research
paper, providing a systematic and reliable approach to clas-
sify memory-based injection attacks using Random Forest
and K-Nearest neighbor. The algorithm can be changed
accordingly.

4.6. Evaluate

Model evaluation techniques for KNN and Random
Forest include train-test split, evaluation metrics such
as accuracy and F1 score, feature importance analysis,
stratified sampling, and cross-validation. These techniques
enable the assessment of model performance, the identi-
fication of important features, and the understanding of
the model’s strengths and weaknesses. When evaluating the
performance of machine learning models like K-Nearest
Neighbors (KNN) and Random Forest, several techniques
are commonly used. For KNN, one effective approach is to
split the dataset into training and testing sets. The model is
trained on the training set and then evaluated on the testing
set to assess its performance. Evaluation metrics such as
accuracy, precision, recall, and F1 score can be calculated
to measure the model’s classification performance.

Similarly, Random Forest models can be evaluated using
the train-test split technique. The dataset is divided into
training and testing sets, and the Random Forest model
is trained on the training set. Subsequently, the model’s
predictions are compared to the actual values in the testing
set to calculate evaluation metrics. Additionally, Random
Forest provides a measure of feature importance, which
can be examined to understand the relative contribution of
different features in the model’s predictions.

Other techniques for evaluating the models include
stratified sampling, where the dataset is split while
maintaining the distribution of target classes, and cross-
validation, which involves dividing the dataset into
multiple subsets called folds. These techniques provide
more robust estimates of the model’s performance by eval-
uating it on different subsets of the data. However, this
cannot be tested in our dataset as the available data is very
low and will yield high accuracy, but which will be mostly
for the False memory injection label as that comprises most
of the data.
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Fig. 2. Flow chart of the machine learning process.

5. Results and Discussion

The inputs for the machine learning models were the
process name, memory used or allocated for the process,
and the percentage of DLL files that were used by that
process. This is calculated by first taking the total number
of uniquely loaded DLL files by all the processes and
taking the ratio of DLL files loaded by the current process
and the total number of DLL files loaded in the current
Windows session. Then there is the target value which says
whether the process is injected or not. We gave the injected
processes 1 and the ones that were not injected 0. This was

done to facilitate the model to perform better. The process
names were also factorized to denote them using numbers
instead of text. Each of the processes was given a unique
number which will be kept the same every time the process
is in the process list. Using much more sophisticated scripts
and libraries preprocessing was done so that the data could
be used by the model to gain some valuable information.

As discussed earlier we first implemented the K-Nearest
neighbor Classifier. Once the data was preprocessed it
was fit into the model from sklearn, with the number of
neighbors as 3. The process name, memory usage, and
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Fig. 3. Learning curve of KNN classifier.

percentage of loaded DLLs form the training data for the
classifier, and the memory injection with 0 and 1 acts as
the target value. Once fit the model was tested using the
test set.

This resulted in a model that had an accuracy score of
around 90 percent. Although the accuracy score is not a
great indicator of how well the model performs having
such high accuracy is expected in machine learning models.
Precision represents the proportion of correctly classified
positive instances out of all instances predicted as positive.
A precision score of 71 percent indicates that the model
achieved a reasonable level of accuracy in correctly identi-
fying positive instances. Looking at the confusion matrix
showed us that out of the 7 injected processes, the model
was able to correctly identify 5 as infected. The recall score,
also known as sensitivity or true positive rate, was also
around 71 percent. Recall measures the ability of the model
to correctly identify positive instances out of all actual
positive instances. The F1 score, which combines precision
and recall into a single metric, was also around 71 percent.
The F1 score is a measure of the model’s balance between
precision and recall. A score of 71 percent implies that the
model achieved a reasonable trade-off between precision
and recall, resulting in a robust overall performance. The
learning curve indicated in Fig. 3 shows the similarity
between training score and cross-validation score.

Next, we implemented the Random Forest Classifier to
compare the results with that of the KNN classifier. While
implementing Random Forest Classifier the same dataset
was used with the criterion being ‘gini’, max depth being
10, minimum samples split being 4, and random state in
effect. The model was from sklearn and had the same
training and target values. Once the model was fit it was
cross verified using the test set. The Random Forest had
an accuracy of around 91 percent it was more successful in
identifying Injected processes correctly. This high accuracy
indicates that the model accurately classified 92 percent
of the instances in the dataset. When looking into the

confusion matrix RF classifier had correctly identified 6
out of 7 infected processes at one of its best random states.
But had also falsely labeled 4 of the process that was not
injected as injected. As seen in Fig. 4, the training accuracy
is quite high but the same cannot be inferred from the
validation accuracy.

Random Forest Classifier also correctly mapped the
contribution on each of the Feature vectors as shown in
Fig. 5. This helped in feature selection for the KNN classi-
fier. According to the classifier, the feature that contributed
significantly to the classification was Memory usage which
should be obvious as that is what is being manipulated by
the malware. Next, we have the percent of DLLs loaded,
the malware was coded in such a way that it could call
and load for more libraries if needed so this contributing
around 0.25 to the classification method is valid. The least
relatively important feature is the process name.

The results shown above are average results of running
the model around 15 times. This was the most general
result shown by both the models. Although the results
are shockingly similar in both the KNN classifier and the
Random Forest classifier, the latter usually had a higher F1
score, precision, and recall in many cases with the highest
being 6 identified as infected out of 7 infected processes
but KNN failed to reach the same results. KNN classifier
was trained by keeping the value of the neighbor as 5 and
1. With k = 5 the results are sub-par and k = 1 is not
usually advised as it could easily misinterpret the results,
even with such a low value the results were not as good as
with that of k = 3. Looking at the results we can clearly say
that a Random Forest classifier can easily predict whether
a process is injected or not and doing that with such small
data to work with is truly impressive. At the same time,
the KNN classifier has done a better job of classifying
the same processes. As we collect more data and reiterate
the models accordingly, we believe that KNN would only
get better in forming groups of infected processes and
thus improving the overall process. At the same time, the
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Fig. 4. Learning curve of random forest classifier.

Fig. 5. Feature importance graph for random forest.

Random Forest classifier would branch out more in case
of more data and its performance would only deteriorate
from here on.

6. Conclusion

In conclusion, this research paper focused on the task
of classifying memory-based injection in processes using
machine learning techniques, specifically Random Forest
(RF) and K-Nearest neighbor Classifier. The features used
for classification were memory usage and the ratio of
DLLs loaded. The study demonstrated the effectiveness of
RF and KNN in accurately determining whether a process
is injected or not. By employing these Machine Learning
algorithms and leveraging feature engineering techniques,
the research aimed to enhance the detection and pre-
vention of memory-based injection attacks. The results
showed that the trained RF and KNN models achieved
high accuracy in classifying the injection status of pro-
cesses based on the provided features. The findings of this

study contribute to the development of robust intrusion
detection systems capable of identifying memory-based
injection attacks in real time. The utilization of RF and
KNN algorithms, along with the selected features, offers
a reliable approach for detecting malicious code injection
and protecting computer systems from potential vulnera-
bilities.

The findings in this paper aren’t the most effective way
to detect malware and mitigate it, but they let a researcher
know where one should be looking for malware and these
findings will be used in our future works to improve the
accuracy by identifying false positives, and false negatives
accurately. Further research can be conducted to explore
the performance of other machine learning algorithms and
additional feature engineering techniques in improving the
accuracy and efficiency of memory-based injection classi-
fication. The continuous advancement of machine learning
and feature engineering methods will aid in fortifying the
security of computer systems against sophisticated attacks.
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