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Abstract — The study developed and implemented Implicit 

and explicit schemes for solving convection –diffusion equation 

in one dimension on concentration of contaminant in a fluid 

flow. The stability of the scheme was analyzed and the accuracy 

of the solution of the contaminant transport equation was 

validated by exact available solution. Graphical presentation of 

the solution for varying velocity and diffusion coefficient was 

given. The explicit method (EM) involved one unknown on lift 

hand side (LHS) while implicit method (IM) involved several 

unknowns on LHS. The study analyzed the effect of velocity and 

diffusion coefficient on concentration of contaminant in a fluid 

flow. The developed schemes were solved numerically using 

MATLAB was to generate the result and in analysis of results. 

Results showed that concentration of contaminants increased 

inversely with velocity and directly to diffusion coefficient. 

Therefore, for proper treatment of water for example, it is 

necessary to reduce the flow velocities to reduce the trend of 

contaminants. As Velocity increases the concentration of 

contaminant decreases and as diffusion coefficient increases the 

concentration of contaminant increases. 

 
Keywords — diffusion coefficient, explicit method, implicit 

backward method, velocity. 

 

I. INTRODUCTION 

A. Background Information 

Numerical simulations of partial differential equations 

have a great significant in environmentalists, hydrologist and 

mathematical modelers in a real life application process are 

required to address current situation and problem solving 

approaches in science and engineering. The application 

process of simulating this equation by numerical 

discretization method for example finite difference method 

(FDM) become a greater point of concern due to time and 

computation consuming on complexity of the method used to 

solve convection-diffusion equation. The convection-

diffusion equation (CDE) is a parabolic partial differential 

equation combining the diffusion equation and advection 

equation. Most problem on CDE occur frequently in transport 

of a ground water pollutants where mass, momentum and heat 

are fundamental transfer phenomena in the universe and 

inside a physical system due to two processes namely 

diffusion and convection whereby diffusion is the movement 

of particles spread from a region of high concentration to a 

region of low concentration and convection is the movement 
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of particles within fluids due to physical movement of 

particles. To study the effects of velocity and diffusion 

coefficient on the concentration contaminant through porous 

medium by numerically solving the parabolic partial 

differential equation using finite difference approximation 

(FDA). Pollutants are unwanted materials in a substance that 

can cause harm to human health and contaminants are inputs 

of alien and potentially toxic substances into the environment 

for example untreated sewage discharge. Authors used 

various methods to solve CDE, for example, Rizwan [1] used 

second order space with time Nodal method, Dehghan [2] 

used new fourth-order explicit formula and Perez used 

change of valuable and integral transform technique to 

generated analytical solution with constant coefficient. None 

of them analyzed the effects of velocity and diffusion 

coefficient using implicit method and explicit method  

B. Mathematical model of CDE 

The mathematical model consider one dimension time 

dependent convection-diffusion equation with velocity and 

diffusion coefficient are two parents to be investigated and 

with assumption that the constant velocity and diffusion 

coefficient are positive, for a general scalar variable and 

subjected to appropriate initial and Dirichlet boundary 

condition is given as: 

 

𝐶𝑡 + µ𝐶𝑥 = 𝐷𝐶𝑥𝑥 0 ≤ x ≤ L, 0 ≤ t ≤T   (1) 

 

with initial conditions: 

 

C(𝑥, 0) = f(𝑥) = exp [ 
−(𝑥−2)2

80𝐷
 ] 0 ≤ x ≤ L  (2) 

 

and Dirichlet boundary conditions. 

Left boundary condition: 

C(0, 𝑡) = 𝑔𝑜(𝑡) = √
20

𝑡+20
 exp [ 

−(2+µ𝑡)2

4𝐷(𝑡+20)
 ] 0 ≤ t ≤T  (3) 

 

Right boundary condition: 

 

C(1, 𝑡) = 𝑔𝐿(𝑡) =√
20

𝑡+20
 exp [ 

−(1+µ𝑡)2

4𝐷(𝑡+20)
 ] 0 ≤ t ≤T  (4)  

 

where the function f, 𝑔𝑜(𝑡) and 𝑔𝐿(𝑡) are known. The 

function values of C(x, t) are to be determined and used to 
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validate the methods used with the assumption that the 

constants µ and D are positive and parameters to be 

investigated  

Dehghan [2] solves (1) with new fourth-order explicit 

formula to obtain analytical solution. 

C. Numerical Schemes 

The section presents the formulation of the three numerical 

schemes to CDE using FDM  

1) Scheme 1: Implicit Backward Euler method 

A difference schemes is implicit if the several unknown 

values can be expressed in terms of the known values. 

Generally, we can express Crank-Nicolson method that space 

derivative is averaged. 

  

 
𝑐𝑖,𝑗+1 − 𝑐𝑖,𝑗 

∆𝑡
=

𝐷

2
(

𝑢𝑖+1,𝑗+1 −2𝑢𝑖,𝑗+1 +𝑢𝑖−1,𝑗+1 

∆𝑥2 +

 
𝑢𝑖+1,𝑗 −2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

∆𝑥2 ) +
𝑢

2
(

𝑐𝑖+1,𝑗+1 −𝑐𝑖−1,𝑗+1 

∆𝑥2 + 
𝑐𝑖+1,𝑗 − 𝐶𝑖−1,𝑗

∆𝑥2 ) (5) 

 

2) Explicit scheme 

A difference scheme is explicit if one unknown value can 

be expressed in terms of the known values. 

  

 
𝑐𝑖,𝑗+1 − 𝑐𝑖,𝑗

∆𝑡
 + 𝜇 (

𝑐𝑖,𝑗+1 − 𝑐𝑖−1,𝑗

∆𝑥
)=D(

𝑐𝑖+1,𝑗+1 −2𝑐𝑖,𝑗 +𝑐𝑖−1,𝑗 

∆𝑥2 ) (6) 

 

II. METHOD OF SOLUTION 

A. Implicit Backward Euler Method 

The Implicit Backward Euler method is the best method 

because of its unconditionally stable. The stability condition 

was derived by Mehdi [3] stability is ratio between the mesh 

sizes Δx and Δt beyond which the schemes will not hold. 

Replacing (1) with partial derivative forward in t, forward 

in x and central in x: 

 

𝐶𝑖
𝐾 −𝐶𝑖

𝑘−1

∆𝑡
 = 

−µ( 𝐶𝑖+1
𝑘  − 𝐶𝑖−1

𝑘 )

2∆𝑥
 + 

𝐷 ( 𝐶𝑖−1 
𝑘  − 2𝐶𝑖

𝑘 + 𝐶𝑖+1
𝑘  )

(𝛥𝑥)2   (7) 

 

where k is variable of time and i is variable in x. 

Multiply equation (7) on both sides by Δt: 

 

𝐶𝑖
𝐾 − 𝐶𝑖

𝑘−1 = 
−µ 𝛥𝑡( 𝐶𝑖+1

𝑘  − 𝐶𝑖−1
𝑘 )

2∆𝑥
 + DΔt (

 ( 𝐶𝑖−1 
𝑘  − 2𝐶𝑖

𝑘 + 𝐶𝑖+1
𝑘  )

(𝛥𝑥)2 )  

(8) 

 

 𝐶𝑖
𝐾 − 𝐶𝑖

𝑘−1 = 
−µΔt

2𝛥𝑥
 (𝐶𝑖+1

𝑘  −  𝐶𝑖−1
𝑘 ) + 

DΔt 

(𝛥𝑥)2 (𝐶𝑖−1 
𝑘  −  2𝐶𝑖

𝑘 +

 𝐶𝑖+1
𝑘 )      (9) 

 

We define 𝛼 =  
µ∆𝑡

2∆𝑥
 , 𝛽 =  

𝐷∆𝑡

(∆𝑥)2 α and β are stability ratios. 

Replacing α and β in equation (9) gives: 

 

 𝐶𝑖
𝐾 − 𝐶𝑖

𝑘−1 = -α (𝐶𝑖+1
𝑘  −  𝐶𝑖−1

𝑘 ) + β (𝐶𝑖−1 
𝑘  −  2𝐶𝑖

𝑘 +

 𝐶𝑖+1
𝑘 )       (10) 

 

 𝐶𝑖
𝐾 − 𝐶𝑖

𝑘−1 = -α𝐶𝑖+1
𝑘 + α𝐶𝑖−1

𝑘  +β𝐶𝑖−1 
𝑘 -2β𝐶𝑖

𝑘 +β𝐶𝑖+1
𝑘  (11)  

−𝐶𝑖
𝑘−1 = -α𝐶𝑖+1

𝑘 + α𝐶𝑖−1
𝑘  +β𝐶𝑖−1 

𝑘 -2β𝐶𝑖
𝑘 +β𝐶𝑖+1

𝑘  - 𝐶𝑖
𝐾  (12) 

 

Dividing (12) on both side by negative, we have: 

 

𝐶𝑖
𝑘−1 = α𝐶𝑖+1

𝑘  - α𝐶𝑖−1
𝑘  – β𝐶𝑖−1 

𝑘 + 2β𝐶𝑖
𝑘 - β𝐶𝑖+1

𝑘 + 𝐶𝑖
𝑘   (13) 

 

𝐶𝑖
𝑘−1 = - α𝐶𝑖−1

𝑘  – β𝐶𝑖−1 
𝑘  + 𝐶𝑖

𝑘 + 2β𝐶𝑖
𝑘 + α𝐶𝑖+1

𝑘  - β𝐶𝑖+1
𝑘   

(14) 

 

𝐶𝑖
𝐾 − 𝐶𝑖

𝑘−1 = 
−µΔt

2𝛥𝑥
 (𝐶𝑖+1

𝑘  −  𝐶𝑖−1
𝑘 ) + 

DΔt 

(𝛥𝑥)2 (𝐶𝑖−1 
𝑘  −  2𝐶𝑖

𝑘 +

 𝐶𝑖+1
𝑘 )       (15) 

 

We define 𝛼 =  
µ∆𝑡

2∆𝑥
 , 𝛽 =  

𝐷∆𝑡

(∆𝑥)2 α and β are stability ratios. 

Replacing α and β in (9) gives: 

 

 𝐶𝑖
𝐾 − 𝐶𝑖

𝑘−1 = -α (𝐶𝑖+1
𝑘  −  𝐶𝑖−1

𝑘 ) + β (𝐶𝑖−1 
𝑘  −  2𝐶𝑖

𝑘 +  𝐶𝑖+1
𝑘  

)       (16) 

 

 𝐶𝑖
𝐾 − 𝐶𝑖

𝑘−1 = -α𝐶𝑖+1
𝑘 + α𝐶𝑖−1

𝑘  +β𝐶𝑖−1 
𝑘 -2β𝐶𝑖

𝑘 +β𝐶𝑖+1
𝑘   (17) 

 

𝐶𝑖
𝐾 − 𝐶𝑖

𝑘−1 = 
−µΔt

2𝛥𝑥
 (𝐶𝑖+1

𝑘  −  𝐶𝑖−1
𝑘 ) + 

DΔt 

(𝛥𝑥)2 (𝐶𝑖−1 
𝑘  −  2𝐶𝑖

𝑘 +

 𝐶𝑖+1
𝑘 )       (18) 

 

We define 𝛼 =  
µ∆𝑡

2∆𝑥
 , 𝛽 =  

𝐷∆𝑡

(∆𝑥)2 α and β are stability ratios. 

Replacing α and β in (9) gives: 

 

 𝐶𝑖
𝐾 − 𝐶𝑖

𝑘−1 = -α (𝐶𝑖+1
𝑘  −  𝐶𝑖−1

𝑘 ) + β (𝐶𝑖−1 
𝑘  −  2𝐶𝑖

𝑘 +  𝐶𝑖+1
𝑘  

)       (19) 

 

 𝐶𝑖
𝐾 − 𝐶𝑖

𝑘−1 = -α𝐶𝑖+1
𝑘 + α𝐶𝑖−1

𝑘  +β𝐶𝑖−1 
𝑘 -2β𝐶𝑖

𝑘 +β𝐶𝑖+1
𝑘  (20)  

 

−𝐶𝑖
𝑘−1 = -α𝐶𝑖+1

𝑘 + α𝐶𝑖−1
𝑘  +β𝐶𝑖−1 

𝑘 -2β𝐶𝑖
𝑘 +β𝐶𝑖+1

𝑘  - 𝐶𝑖
𝐾  (21) 

 

Dividing (21) on both side by negative, we have: 

 

𝐶𝑖
𝑘−1 = α𝐶𝑖+1

𝑘  - α𝐶𝑖−1
𝑘  – β𝐶𝑖−1 

𝑘 + 2β𝐶𝑖
𝑘 - β𝐶𝑖+1

𝑘 + 𝐶𝑖
𝑘   (22) 

 

𝐶𝑖
𝑘−1 = - α𝐶𝑖−1

𝑘  – β𝐶𝑖−1 
𝑘  + 𝐶𝑖

𝑘 + 2β𝐶𝑖
𝑘 + α𝐶𝑖+1

𝑘  - β𝐶𝑖+1
𝑘 .  

(23) 

 

Re-arranging equation (23) we get: 

 

𝐶𝑖
𝑘−1 = - (α + β) 𝐶𝑖−1

𝑘  + (1+2β) 𝐶𝑖
𝑘 + (α –β) 𝐶𝑖+1

𝑘   (24) 

 

−𝐶𝑖
𝑘−1 = -α𝐶𝑖+1

𝑘 + α𝐶𝑖−1
𝑘  +β𝐶𝑖−1 

𝑘 -2β𝐶𝑖
𝑘 +β𝐶𝑖+1

𝑘  - 𝐶𝑖
𝐾 . (25) 

 

Dividing (25) on both side by negative, we have: 

 

𝐶𝑖
𝑘−1 = α𝐶𝑖+1

𝑘  - α𝐶𝑖−1
𝑘  – β𝐶𝑖−1 

𝑘 + 2β𝐶𝑖
𝑘 - β𝐶𝑖+1

𝑘 + 𝐶𝑖
𝑘   (26) 

 

𝐶𝑖
𝑘−1 = - α𝐶𝑖−1

𝑘  – β𝐶𝑖−1 
𝑘  + 𝐶𝑖

𝑘 + 2β𝐶𝑖
𝑘 + α𝐶𝑖+1

𝑘  - β𝐶𝑖+1
𝑘   

(27) 

 

Re-arranging (27) we get: 

 

𝐶𝑖
𝑘−1 = - (α + β) 𝐶𝑖−1

𝑘  + (1+2β) 𝐶𝑖
𝑘 + (α –β) 𝐶𝑖+1

𝑘   (28) 

 



    European Journal of Engineering and Technology Research 

ISSN: 2736-576X 

 

DOI: http://dx.doi.org/10.24018/ejeng.2022.7.2.2712   Vol 7 | Issue 2 | March 2022 52 
 

B. Explicit Method (EM) 

The unknown 𝐶𝑖,𝑗+1  is on the LHS alone and the knowns 

are on the RHS. 

By discretizing the PDE in (1) approximated by the FDA 

as: 

 

 
𝐶𝑖,𝑗+1−𝐶𝑖,𝑗

∆𝑡
 + µ

(𝐶𝑖−1,𝑗 − 𝐶𝑖+1,𝑗)

2∆𝑥
 = 

𝐷(𝐶𝑖−1,𝑗 −2𝐶𝑖,𝑗 + 𝐶𝑖+1,𝑗) 

(∆𝑥)2  (29)  

 

Multiply (29) on both sides by Δt: 

 

𝐶𝑖,𝑗+1 − 𝐶𝑖,𝑗  + µ𝛥𝑡
(𝐶𝑖−1,𝑗 − 𝐶𝑖+1,𝑗)

2∆𝑥
 = 

𝐷𝛥𝑡(𝐶𝑖−1,𝑗 −2𝐶𝑖,𝑗 + 𝐶𝑖+1,𝑗) 

(∆𝑥)2   

(30) 

 

𝐶𝑖,𝑗+1 − 𝐶𝑖,𝑗 = -
µ𝛥𝑡

2𝛥𝑥
 (𝐶𝑖−1,𝑗 −  𝐶𝑖+1,𝑗) + 

𝐷𝛥𝑡

(∆𝑥)2 (𝐶𝑖−1,𝑗 −

2𝐶𝑖,𝑗  +  𝐶𝑖+1,𝑗)      (31) 

 

 𝐶𝑖,𝑗+1 = -
µ𝛥𝑡

2𝛥𝑥
 (𝐶𝑖−1,𝑗 − 𝐶𝑖+1,𝑗) + 

𝐷𝛥𝑡

(∆𝑥)2 (𝐶𝑖−1,𝑗 − 2𝐶𝑖,𝑗  +

 𝐶𝑖+1,𝑗) + 𝐶𝑖,𝑗       (32) 

 

We define 𝑟1= 
µ∆𝑡

2∆𝑥
, 𝑟2 =  

𝐷∆𝑡

(∆𝑋)2  𝑟1 𝑎𝑛𝑑 𝑟2 are stability 

ratios; Replacing (32) with stability ratios gives: 

 

𝐶𝑖,𝑗+1 = -𝑟1 (𝐶𝑖−1,𝑗 −  𝐶𝑖+1,𝑗) + 𝑟2 (𝐶𝑖−1,𝑗 − 2𝐶𝑖,𝑗  +  𝐶𝑖+1,𝑗) 

+ 𝐶𝑖,𝑗       (33) 

 

𝐶𝑖,𝑗+1 = -𝑟1 𝐶𝑖−1,𝑗 + 𝑟1𝐶𝑖+1,𝑗 + 𝑟2 𝐶𝑖−1,𝑗 − 2𝑟2 𝐶𝑖,𝑗  +

𝑟2𝐶𝑖+1,𝑗+ 𝐶𝑖,𝑗       (34) 

 

𝐶𝑖,𝑗+1 = -𝑟1 𝐶𝑖−1,𝑗 + 𝑟2 𝐶𝑖−1,𝑗 + 𝐶𝑖,𝑗  −2𝑟2 𝐶𝑖,𝑗  + 𝑟1𝐶𝑖+1,𝑗+ 

𝑟2𝐶𝑖+1,𝑗      (35) 

 

Re-arranging (35) we get: 

 

𝐶𝑖,𝑗+1 = (𝑟2 − 𝑟1)𝐶𝑖−1,𝑗 + (1 − 2𝑟2)𝐶𝑖,𝑗 + (𝑟1 + 𝑟2)𝐶𝑖+1,𝑗. 

     (36) 

 

as the numerical scheme. 

Hindmarsh [4] and Sousa [5] showed that the condition for 

stability is: 

 
2𝐷∆𝑡

(∆𝑥)2 ≤ 1 𝑎𝑛𝑑 (
µ∆𝑡

∆𝑥
)2 ≤

2𝐷∆𝑡

(∆𝑥)2 

 

𝑟1 = 0.2 , 𝑟2 = 0.5 , ∆𝑡 = 0.05 , ∆𝑥 ≤  0.1  

 

where D and µ are varied to study effect of concentration of 

contaminants. 

 

III. RESULTS 

The data of numerical schemes presented in Table I and II 

for objective one: To analyze the effect of velocity on the 

concentration of contaminant are obtained from (15) and (36) 

respectively for analysis. 

 

 
 

TABLE I: IMPLICITE VALUES OF C(X, T); D=0.1,T=1 

  

  
Fig. 1. Implicit analysis. 

 

Fig. 1 of implicit values of concentration above clearly 

shows there is general linear increase of concentration with 

distance and also with respect with time. As velocity 

increases from 0.9 to 1.0 the concentration of contaminant 

decreases. The rate of increase of concentration are nearly the 

same, take at x = 0.1 m the difference rate of concentration of 

contaminant is 0.025(3dp). 

 
TABLE II: EXPLICIT VALUES OF C(X, T); D=0.1; T=1 

x µ=0.8 µ=0.9 µ=1.0 

0 0.5764 0.5794 0.5824 

0.1 0.6578 0.6549 0.6521 

0.2 0.6952 0.6922 0.6892 

0.3 0.7254 0.7225 0.7195 

0.4 0.7540 0.7512 0.7483 

0.5 0.7816 0.7789 0.7762 

0.6 0.8079 0.8054 0.8028 

0.7 0.8319 0.8298 0.8276 

0.8 0.8513 0.8500 0.8486 

0.9 0.8616 0.8619 0.8620 

1 0.8581 0.8605 0.8628 

 

Fig. 2 of explicit values of concentration above clearly 

shows there is general linear increase of concentration with 

distance and also with respect with time. As velocity 

increases from 0.9 to 1.0 the concentration of contaminant 

decreases. The rate of increase of concentration are nearly the 

same. The effect of velocity was notes after amplification of 

results. 

The data of numerical schemes presented in Table III and 

IV for objective two: to analyze the effect of diffusion 

coefficient on the concentration of contaminant are obtained 

from (15) and (36) respectively for analysis. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

x

C
o
n
c
e
n
tr

a
ti
o
n
 C

(x
,t

)

Effect of velocity , on C(x,t);IM;D=0.1;t=1

=0.8

=0.9

=1.0

Length x (m) 

Concentration C(x, t) 

Velocity µ (m/s) 

0.8 0.9 1.0 

0 0.3838 0.3586 0.3343 

0.1 0.4098 0.3839 0.3587 

0.2 0.4366 0.4099 0.384 

0.3 0.4640 0.4367 0.4100 

0.4 0.4919 0.4641 0.4368 

0.5 0.5202 0.4919 0.4642 

0.6 0.5488 0.5203 0.4921 

0.7 0.5776 0.5489 0.5203 

0.8 0.6064 0.5776 0.5489 

0.9 0.6352 0.6064 0.5776 

1 0.6636 0.6350 0.6062 
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Fig. 2. Explicit analysis. 

 

TABLE III: IMPLICITE VALUES OF C(X, T); µ=0.8, T=1 

x D=0.1 D=0.2 D=0.3 

0 0.3838 0.715 0.612 

0.1 0.4098 0.7307 0.6324 

0.2 0.4366 0.7463 0.6526 

0.3 0.464 0.7615 0.6727 

0.4 0.4919 0.7765 0.6926 

0.5 0.5202 0.7911 0.7123 

0.6 0.5488 0.8053 0.7316 

0.7 0.5776 0.8192 0.7506 

0.8 0.6064 0.8326 0.7691 

0.9 0.6352 0.8456 0.7872 

1 0.6636 0.8582 0.8047 

 

 
Fig. 3. Implicit analysis. 

 
TABLE IV: EXPLICIT VALUES OF C(X, T); µ=0.8; T=1 

x D=0.1 D=0.2 D=0.3 

0 0.6041 0.7771 0.8452 

0.1 0.6391 0.7992 0.861 

0.2 0.6693 0.818 0.8746 

0.3 0.6991 0.836 0.8874 

0.4 0.7284 0.8534 0.8996 

0.5 0.757 0.87 0.9112 

0.6 0.7848 0.8858 0.9222 

0.7 0.8116 0.9007 0.9326 

0.8 0.8371 0.9148 0.9423 

0.9 0.8611 0.9278 0.9511 

1 0.8806 0.9383 0.9583 

 

 
Fig. 4. Explicit analysis. 

 

Fig. 3 of implicit values of concentration above clearly 

shows there is linear increase of concentration with distance 

and also with respect with time. As D increases from 0.1 to 

0.3 the concentration of contaminant increases. The rate of 

increase of concentration at D= 0.1 is sharp compare when 

the D = 0.2, 0.3. 

Fig. 4 of explicit values of concentration above clearly 

shows there is linear increase of concentration with distance 

and also with respect with time. As D increases from 0.1 to 

0.3 the concentration of contaminant increases. The effect of 

D was notes after amplification of results. 

 

IV. DISCUSSION AND CONCLUSION 

A. Conclusion 

The study has successfully developed and implemented the 

numerical simulations using Implicit Backward Euler method 

(IM) and explicit method (EM) schemes from FDM. The 

schemes proved to satisfy the stability ratio, r, must fall 

within a certain range for the scheme to be useful. 

 
2𝐷∆𝑡

(∆𝑥)2 ≤ 1 𝑎𝑛𝑑 (
µ∆𝑡

∆𝑥
)2 ≤

2𝐷∆𝑡

(∆𝑥)2             [4], [5] 

 

Generally, the methods showed the following effects: 

(i) As the velocity of the flow increases the concentration 

of the contaminants decreases. 

(ii) As the diffusion coefficient increases the concentration 

of contaminants increases. 

 

LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS 

PDE  Partial Differential Equation  

EM Explicit method 

FDA Finite Difference Approximation  

CNM  Crank-Nicolson method 

C (x, t) Concentration (dependent variable)  

1D One Dimensional 

µ  Velocity of flow  

ICs  Initial conditions 

D  Diffusion constant  

𝑪𝒙  First spatial derivative of concentration  

𝐂𝒙𝒙 Second spatial derivative of concentration 
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T   Time of flow (independent variable) in second 

BCs  Boundary condition 

L  Length of channel (independent variable) in meters 

RHS  Right hand side 

CDE  Convection-Diffusion Equation  

LHS  Left hand side 

α  courant constant  

MATLAB  Matrix Laboratory 

β, 𝒓𝟏 , 𝒓𝟐 , 𝒓𝟑 , 𝒓𝟒 ratio of stability  

IM  Implicit Method 
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