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Numerical Simulation of Effects of Velocity and
Diffusion Coefficient on Concentration of
Contaminants in the Fluid Flow

K. Langat, J. Shichikha, and J. Bitok

Abstract — The study developed and implemented Implicit
and explicit schemes for solving convection —diffusion equation
in one dimension on concentration of contaminant in a fluid
flow. The stability of the scheme was analyzed and the accuracy
of the solution of the contaminant transport equation was
validated by exact available solution. Graphical presentation of
the solution for varying velocity and diffusion coefficient was
given. The explicit method (EM) involved one unknown on lift
hand side (LHS) while implicit method (IM) involved several
unknowns on LHS. The study analyzed the effect of velocity and
diffusion coefficient on concentration of contaminant in a fluid
flow. The developed schemes were solved numerically using
MATLAB was to generate the result and in analysis of results.
Results showed that concentration of contaminants increased
inversely with velocity and directly to diffusion coefficient.
Therefore, for proper treatment of water for example, it is
necessary to reduce the flow velocities to reduce the trend of
contaminants. As Velocity increases the concentration of
contaminant decreases and as diffusion coefficient increases the
concentration of contaminant increases.

Keywords — diffusion coefficient, explicit method, implicit
backward method, velocity.

I. INTRODUCTION

A. Background Information

Numerical simulations of partial differential equations
have a great significant in environmentalists, hydrologist and
mathematical modelers in a real life application process are
required to address current situation and problem solving
approaches in science and engineering. The application
process of simulating this equation by numerical
discretization method for example finite difference method
(FDM) become a greater point of concern due to time and
computation consuming on complexity of the method used to
solve convection-diffusion equation. The convection-
diffusion equation (CDE) is a parabolic partial differential
equation combining the diffusion equation and advection
equation. Most problem on CDE occur frequently in transport
of a ground water pollutants where mass, momentum and heat
are fundamental transfer phenomena in the universe and
inside a physical system due to two processes namely
diffusion and convection whereby diffusion is the movement
of particles spread from a region of high concentration to a
region of low concentration and convection is the movement
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of particles within fluids due to physical movement of
particles. To study the effects of velocity and diffusion
coefficient on the concentration contaminant through porous
medium by numerically solving the parabolic partial
differential equation using finite difference approximation
(FDA). Pollutants are unwanted materials in a substance that
can cause harm to human health and contaminants are inputs
of alien and potentially toxic substances into the environment
for example untreated sewage discharge. Authors used
various methods to solve CDE, for example, Rizwan [1] used
second order space with time Nodal method, Dehghan [2]
used new fourth-order explicit formula and Perez used
change of valuable and integral transform technique to
generated analytical solution with constant coefficient. None
of them analyzed the effects of velocity and diffusion
coefficient using implicit method and explicit method

B. Mathematical model of CDE

The mathematical model consider one dimension time
dependent convection-diffusion equation with velocity and
diffusion coefficient are two parents to be investigated and
with assumption that the constant velocity and diffusion
coefficient are positive, for a general scalar variable and
subjected to appropriate initial and Dirichlet boundary
condition is given as:

Co+1uCy=DCyry 0SX<L,0<t<T @)

with initial conditions:

Cx0)=f@=exp["E20<x<L @)
and Dirichlet boundary conditions.

Left boundary condition:

C0,0)=go(0) = |2 exp [-210 10 <t<T (3)

t+20 4D(t+20)

Right boundary condition:

_ 2
C(LD =)= [ e [ 10<t<T (&)

where the function f, g,(t) and g,(t) are known. The
function values of C(x, t) are to be determined and used to
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validate the methods used with the assumption that the
constants u and D are positive and parameters to be
investigated

Dehghan [2] solves (1) with new fourth-order explicit
formula to obtain analytical solution.

C. Numerical Schemes

The section presents the formulation of the three numerical
schemes to CDE using FDM

1) Scheme 1: Implicit Backward Euler method

A difference schemes is implicit if the several unknown
values can be expressed in terms of the known values.
Generally, we can express Crank-Nicolson method that space
derivative is averaged.

Cij+1—Cij _D (Uit1,j+1 ~2Uij+1 +Ui-1,j+1 +
At 2 Ax?
Uu; i— P
i+1,j ZuL,] +ui—1,j + E (Ci+1,j+1 _Ci—l,j+1 +
Ax? 2 Ax?

Ci+1,j— Cz 11) (5)

2) Explicit scheme

A difference scheme is explicit if one unknown value can
be expressed in terms of the known values.

Cij+1 - Ci,j +u (Ci,j+1 - Ci—l,j):D(CL+1j+1 —2Cjj4+Ci— 1/) (6)
At Ax Ax?

Il. METHOD OF SOLUTION

A. Implicit Backward Euler Method

The Implicit Backward Euler method is the best method
because of its unconditionally stable. The stability condition
was derived by Mehdi [3] stability is ratio between the mesh
sizes Ax and At beyond which the schemes will not hold.

Replacing (1) with partial derivative forward in t, forward
in X and central in x:

cff =cl — K ) +2 (cfy —2¢f+c) @)

At 2Ax (4x)?

where k is variable of time and i is variable in x.
Multiply equation (7) on both sides by At:

ck — ck-1= —nae(cl, —cf) + DAt ((Cik—1 —2cf vl ))
t t 2Ax (4x)?
(8)
1 _ —pAt DAt
Clif =it = (Cha = CED+ 5 (Gl — 2C) +
Cla ©)
We define @ = £ DA and B are stability ratios.

240x (A )2
Replacing a and P in equation (9) gives:

Cf =Cf7t = - (€l — Cly) + B (CEy — 2¢f +
Cikﬂ (10)

CL-K - Cl-k_1 = -(xCiI‘f,_l-i- OLCik_l +BC 'ZBCk +BCL+1 (11)
—CF ™ = -aCk ,+ aCk |, +BCK -ZBC" +BCk, - ¢k (12)
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Dividing (12) on both side by negative, we have:
Cft =aCf, - aCly

~BCEy +2BCE - BCS,+ CF (13)

CEt=-aCk, —BCl, +Cf+2BC) + aCk, - BCE,

(14)
_1 _ —uAt DAt
Clf =Gt = (= G + s (G — 20 +
Cla (15)
. _ uAt o, DAt o .
We define a = e P = G @ and [ are stability ratios.

Replacing a and B in (9) gives:

ck —ckt=-a(ck, - “. —2CF + ¢k,

(16)

Cl)+B(Ce

€ = CF = -aCl,+ aCk, +BCE, -2pCk+pCl, (17)

DAt

- —pAt
cf —cf =" (C1+1 — i+ @t €k, —2¢f +
Cita) (18)
. _ ﬂ _
We define a = —— (A )2 a and B are stability ratios.

Replacing o and B in (9) gives:

cf -kt =-a(ch, — cEp+BCl, - 2ck + ck,

) (19)

€ - CF = -aCl,+ oCk, +BCE, -2BCK+pCl, (20)

—C{Th = -y + aCl, +BCEL -2BCE +BCE, - CF (21)
Dividing (21) on both side by negative, we have:

k-1 _ rk k
G =0l -0l

~BCEy+2BCS - BCS 4+ CF (22)

Czk_l =- (szk_1 - BCik_ Ck + ZBCk + uClIfi-l BC‘”

(23)
Re-arranging equation (23) we get:
ClFr=-(a+PB)Cl,+(1+2B) CF+(a-B)Ck, (24)
—Cf™t =-aCk + ack  +BCK -2BCK+pCE, - CK . (25)
Dividing (25) on both side by negative, we have:

CEt=aCfiy - aCfy —BCl, +2BC) - BCH 4+ CF (26)

Ck'=-ack,—Bck, +ck+2pck + ack, - pck,
27)

Re-arranging (27) we get:

CET1 = (a+P) €y + (142p) Cf + () €y (28)
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B. Explicit Method (EM)
The unknown C; j,, is on the LHS alone and the knowns
are on the RHS.

By discretizing the PDE in (1) approximated by the FDA
as:

Cij+1=Cij + (Ci—1,j — Cit1,j) _ D(Ci—1,j —2C;j + Ciyq,5)
At 2Ax (Ax)2

(29)

Multiply (29) on both sides by At:

(Ciza,j = Cit1,j) _ DAL(Cim1,j =2Cij + Ciya,j)
2Ax (Ax)2

Cijr1 — Cyj+pdt

(30)
At DAt
Cijyr1—Cij = ';A—x (Ciz1j — Cizrj) + Py (I
2C;; + Ciyaj) (31)
At DAt
Cij+1= _;Tx (Cie1j — Cipaj) + 02 (Cimqj —2G;; +
Ciyr,) + Gy (32)
We define rf%, r, = %rl and r, are stability

ratios; Replacing (32) with stability ratios gives:

Civ1,j) ¥ 12 (Cizrj — 2Ci; + Ciyq)j)
(33)

Cijy1="11 (Ci—l,j -
+ Gy

Cijr1= 11 Cgj +1Cyy; + 1p Cogj —21,C; +
75Ciy1,j% Cij (34)

Cijyr =1 Ci_qj +1Ciqj +Cij =21, Cij +11Ciqq it
75Ci41,j (35)
Re-arranging (35) we get:

Cijo1 = —1)Cioyj + (1 =21)C;; + (rp +712)Cisy ).
(36)

as the numerical scheme.
Hindmarsh [4] and Sousa [5] showed that the condition for
stability is:

2DAt
—<

uAt < 2DAt
(ax)2 —

tand (5 < 25

1, =02,r, =0.5,At = 0.05,Ax < 0.1

where D and p are varied to study effect of concentration of
contaminants.

I1l. RESULTS

The data of numerical schemes presented in Table I and 11
for objective one: To analyze the effect of velocity on the
concentration of contaminant are obtained from (15) and (36)
respectively for analysis.

DOI: http://dx.doi.org/10.24018/ejeng.2022.7.2.2712

European Journal of Engineering and Technology Research
ISSN: 2736-576X

TABLE I: IMPLICITE VALUES OF C(X, T); D=0.1,T=1
Concentration C(x, t)
Velocity p (m/s)

Length x (m)

0.8 0.9 1.0
0 0.3838 0.3586 0.3343
0.1 0.4098 0.3839 0.3587
0.2 0.4366 0.4099 0.384
0.3 0.4640 0.4367 0.4100
0.4 0.4919 0.4641 0.4368
0.5 0.5202 0.4919 0.4642
0.6 0.5488 0.5203 0.4921
0.7 0.5776 0.5489 0.5203
0.8 0.6064 0.5776 0.5489
0.9 0.6352 0.6064 0.5776
1 0.6636 0.6350 0.6062

Effect of velocity , 1 on C(x,t);IM;D=0.1;t=1
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Fig. 1. Implicit analysis.

Fig. 1 of implicit values of concentration above clearly
shows there is general linear increase of concentration with
distance and also with respect with time. As velocity
increases from 0.9 to 1.0 the concentration of contaminant
decreases. The rate of increase of concentration are nearly the
same, take at x = 0.1 m the difference rate of concentration of
contaminant is 0.025(3dp).

TABLE II: EXPLICIT VALUES OF C(X, T); D=0.1; 1=1

X pn=0.8 u=0.9 pn=1.0
0 0.5764 0.5794 0.5824
0.1 0.6578 0.6549 0.6521
0.2 0.6952 0.6922 0.6892
0.3 0.7254 0.7225 0.7195
0.4 0.7540 0.7512 0.7483
0.5 0.7816 0.7789 0.7762
0.6 0.8079 0.8054 0.8028
0.7 0.8319 0.8298 0.8276
0.8 0.8513 0.8500 0.8486
0.9 0.8616 0.8619 0.8620
1 0.8581 0.8605 0.8628

Fig. 2 of explicit values of concentration above clearly
shows there is general linear increase of concentration with
distance and also with respect with time. As velocity
increases from 0.9 to 1.0 the concentration of contaminant
decreases. The rate of increase of concentration are nearly the
same. The effect of velocity was notes after amplification of
results.

The data of numerical schemes presented in Table 11l and
IV for objective two: to analyze the effect of diffusion
coefficient on the concentration of contaminant are obtained
from (15) and (36) respectively for analysis.

Vol 7 | Issue 2 | March 2022



Effect of velocity on C(x,t);EM;D=0.1;t=1
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Fig. 2. Explicit analysis.

TABLE III: IMPLICITE VALUES OF C(X, T); n=0.8, 7=1

X D=0.1 D=0.2 D=0.3
0 0.3838 0.715 0.612
0.1 0.4098 0.7307 0.6324
0.2 0.4366 0.7463 0.6526
0.3 0.464 0.7615 0.6727
0.4 0.4919 0.7765 0.6926
0.5 0.5202 0.7911 0.7123
0.6 0.5488 0.8053 0.7316
0.7 0.5776 0.8192 0.7506
0.8 0.6064 0.8326 0.7691
0.9 0.6352 0.8456 0.7872
1 0.6636 0.8582 0.8047

Effect of diffusion coefficient ,D on C(x,t);IM; u=0.8;t=1
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Fig. 3. Implicit analysis.

TABLE IV: EXPLICIT VALUES OF C(X, T); u=0.8; T=1

X D=0.1 D=0.2 D=0.3
0 0.6041 0.7771 0.8452
0.1 0.6391 0.7992 0.861
0.2 0.6693 0.818 0.8746
0.3 0.6991 0.836 0.8874
0.4 0.7284 0.8534 0.8996
0.5 0.757 0.87 0.9112
0.6 0.7848 0.8858 0.9222
0.7 0.8116 0.9007 0.9326
0.8 0.8371 0.9148 0.9423
0.9 0.8611 0.9278 0.9511
1 0.8806 0.9383 0.9583
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Effect of D on C(x,t);EM;p=0.8;t=1
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Fig. 4. Explicit analysis.

Fig. 3 of implicit values of concentration above clearly
shows there is linear increase of concentration with distance
and also with respect with time. As D increases from 0.1 to
0.3 the concentration of contaminant increases. The rate of
increase of concentration at D= 0.1 is sharp compare when
the D=0.2,0.3.

Fig. 4 of explicit values of concentration above clearly
shows there is linear increase of concentration with distance
and also with respect with time. As D increases from 0.1 to
0.3 the concentration of contaminant increases. The effect of
D was notes after amplification of results.

1V. DISCUSSION AND CONCLUSION

A. Conclusion

The study has successfully developed and implemented the
numerical simulations using Implicit Backward Euler method
(IM) and explicit method (EM) schemes from FDM. The
schemes proved to satisfy the stability ratio, r, must fall
within a certain range for the scheme to be useful.

pAt
Ax

2DAt 2 _ 2DAt
o S land (=5)° < @2 [4], [5]

Generally, the methods showed the following effects:

(i) As the velocity of the flow increases the concentration
of the contaminants decreases.

(i) As the diffusion coefficient increases the concentration
of contaminants increases.

LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS

PDE  Partial Differential Equation

EM Explicit method

FDA  Finite Difference Approximation
CNM  Crank-Nicolson method

C (x, t) Concentration (dependent variable)

1D One Dimensional

n Velocity of flow

ICs Initial conditions

D Diffusion constant

C, First spatial derivative of concentration
Cox Second spatial derivative of concentration
Ct ime derivative of concentration
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T
BCs
L

Time of flow (independent variable) in second
Boundary condition
Length of channel (independent variable) in meters

RHS  Right hand side
CDE Convection-Diffusion Equation
LHS  Left hand side

a

courant constant

MATLAB Matrix Laboratory
B, 7,1y, 13,1, ratio of stability

IM

(1]

[2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

DO

Implicit Method
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