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Application of Eigenvalues and Eigenvectors in
Correlating Density and Fire Properties of Some
Selected Woods in South-East Nigeria

Vincent Nwalieji Okafor, I[gwebuike Enweonye, and Patrick Ugochukwu Umennadi

Abstract—Data sourced from literature for wood density (WD)
and fire properties for fifteen Nigerian woods were analysed.
The fire properties are ignition time (IT), flame propagation
rate (FPR), flame duration (FD), afterglow time (AGT), ash
formation (AF) and limiting oxygen index (LOI). The aim was to
correlate density and fire properties of wood using eigenvalues
and eigenvectors. The analysis tool adopted was the statistical
analysis system (SAS) where principal component and regression
analyses were performed. Based on the presented data and
analyses, WD was found to relate well with FPR, AGT and
LOI with an adjusted R-Square = 83% while the other three
parameters: IT, FD and AF constitute random noise.

Index Terms—Eigenvalues, Eigenvectors,
Wood density, South-East Nigeria.

Fire properties,

I. INTRODUCTION

Woods have multipurpose uses in the human society. They
found wide application in construction of ships, boats, furni-
ture etc. and are extensively used in buildings as well as for
fuels and many other industrial applications such as, in the
pulp and paper industry, forest reserves, the toothpick industry
and for afforestation purposes among others [1].

Combustion / pyrolysis has been identified as the greatest
factor that undermines or limits the application of woods [2].
During the combustion of a wood material, oxidation occurs
which results to exothermic chemical reaction producing heat,
gases, tars, char, vapour, light, volatile and various reaction
products [3]-[6]. Fire starts on a flammable or combustible
material when exposed to a heat source in combination with
adequate supply of an oxidizer such as oxygen or oxygen-rich
compound. Above the flash point of the fuel, fire sustains a rate
of rapid oxidation and a chain reaction is produced which is
usually termed fire tetrahedron. Fire will never exist if all these
elements are not in place and in the right proportion. Once fire
is sustained, the wood undergoes thermal degradation [5], [6].

In practice, pyrolysis and combustion of flammable volatile
do not occur at the same time. It is important to distinguish
pyrolysis from combustion. Pyrolysis which is the thermal
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decomposition of a material takes place without an oxidizer,
and hence an endothermic reaction. In the presence of an
oxidizer, the products of pyrolysis undergo a rapid thermal
decomposition resulting in an exothermic reaction [5], [6].
It is also known that piloted flame ignition (in which a
flame gives energy to the gaseous species) usually takes place
at a lower temperature than unpiloted ignition (where the
volatile must achieve the necessary energy for ignition through
heating alone) [1], [5], [7]. Incomplete combustion occurs
when there is insufficient supply of an oxidizer resulting
essentially to carbonaceous products such as carbon monoxide,
char, smoke, unburnt flammable volatile and nonflammable
gases [7]. The glowing process that occurs in carbonaceous
char is represented in equations (1) and (2).

Obviously, the production of CO5 releases more heat than
the evolution of C'O. This is so because the combustion
reaction at the carbon monoxide stage does not sustain self-
propagation due to the release of small quantity of heat at that
stage but self-propagation is sustained at complete combustion
reaction in which a lot of heat is evolved [8].

C+ %Oz oAl o0 AH = 131K Jmol-t (1)

h
C+0, 2 0o,

AH = —4.76K Jmol™'  (2)

Several factors determine the thermal property of any mate-
rial. These include the chemical constitution and the environ-
mental conditions such as temperature, pressure, draught or
air flow, surface contour and orientation. The most important
single factor is, of course, the chemical constitution of the
material [4]. Studies on the burning characteristics of trop-
ical woods abound [8]-[11] and especially, the relationship
between wood density and moisture content. For example,
Wang et al. (1984) [12] studied the variation in density and
moisture content of wood and bark among twenty Eucalyptus
grandis progenies. The authors reported that differences in
density and moisture content among progenies were significant
and variations in wood properties were largely due to genetic
differences and that there was no relationship between wood
density and moisture content. In agreement with their findings
is the widely reported negative correlation between sapwood
saturated water content and density which was asserted by
Meinzer et al. (2003) [13]. Consequently, wood density and
moisture content are independent variables and therefore do
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not correlate. Nonetheless, literature on the application of
eigenvalues and eigenvectors in the correlation of fire prop-
erties with wood density is not well developed; hence, this
study.

II. METHODOLOGY

The data used were published by [11], [14]. The data
were generated from investigation of fire properties of fifteen
Nigerian wood species from different rainforests in South-
East, Nigeria. The selection was based on the information
obtained from respondents (seasoned farmers and wood deal-
ers) to questionnaires. The construction of the questionnaires
reflected the six points modified Likert scale of strongly agree,
agree, somewhat agree, somewhat disagree, disagree, strongly
disagree. The density and fire properties of the woods were
measured according to previous works of literature [1], [2],
[8]-[11]. The data are shown in Table I. The combustion
characteristics of 15 Nigerian woods showing density and fire
properties in their respective international system of units.

TABLE I
Density and Fire Properties of the Woods

S/N Tree Species WD IT (s) FPR FD (s) AGT (s) AF (%) LOI (%)
(gem™1) (ems™1)
1 D. oliveri 0.39 3.00 0.27 12.00 184.00 1.26 28.78
2 A. occidentale 0.40 4.00 0.26 17.00 215.00 1.33 26.81
3 V. doniana 0.44 5.00 0.24 31.00 267.00 238 27.14
4 L. griffonianus 0.45 3.00 0.23 27.00 204.00 2.16 26.29
5 G. arborea 0.46 3.00 0.22 34.00 166.00 0.26 27.52
6 N. latifolia 0.46 4.00 0.21 28.00 198.00 0.88 26.06
7 T. grandis 0.47 6.00 0.20 39.00 99.00 1.12 29.56
8 M. indica 0.59 6.00 0.16 27.00 70.00 2.14 28.60
9 D. regia 0.61 5.00 0.17 56.00 172.00 0.36 26.00
10 N. laevis 0.62 4.00 0.15 27.00 218.00 1.53 27.03
11 A. indica 0.63 7.00 0.15 26.00 179.00 0.29 28.32
12 D. guineense 0.71 8.00 0.15 33.00 134.00 0.19 28.21
13 T. superb 0.75 3.00 0.18 28.00 170.00 0.56 29.75
14 M. obovate 0.94 10.00 0.15 13.00 197.00 0.19 30.49
15 1. gabonensis 0.97 9.00 0.15 19.00 185.00 0.96 29.93

In order to gain insight to the analysis variables, the SAS
procedure PROC FACTOR was employed, which used the
Principal Component Analysis (PCA) [15], as default option.
The eigenvalues corresponding to the principal components
(eigenvectors) are arranged according to the proportion of
variation of data explained by each. PCA provides an elegant
dimensionality reduction as a way to reduce the complexity of
a model and avoid over-fitting. PCA method informs the con-
tributions of each principal component, to the total variance,
and the eigenvectors associated with non-zero eigenvalues, of
the coordinates. In practice, it is sufficient to include enough
principal components that cover about 70 to 80 percent of the
data variation.

Alternatively, the scree plot [16], a graph of eigenvalues,
provides a tool to determine the number of factors to retain.
The reduced dimension data set allows to process, analyze and
interpret data in an easy way. In model selection, the residual
sum of squares always get smaller as more variables are added
to a model. If we aim to select the model with the smallest
residual sum of squares, the model including all variables
would always be selected. Mallows’s C), addresses the issue
of over-fitting. Under this criterion the optimal model is a
compromise influenced by the sample size, the effect sizes of
the different predictors, and the degree of collinearity between
them. If P regressors are selected from a set of K > P, the
C), statistic for that particular set of regressors is defined as:

BTt ) 3)
Where SSE, = X:fvzl(Y7 —Y,:)? is the error sum of squares
for the model with P regressors;

Y, is the predicted value of the it" observation of Y from the
P regressors;

5?2 is the residual mean square after regression on the complete
set of K regressors and can be estimated by mean square error
(MSE), n is the sample size. The lower the (), is the better
the model.

A model with a larger R-squared value means that the
independent variables explain a larger percentage of the vari-
ation in the independent variable. However, this may conflict
with parsimony. The adjusted R-squared value takes this into
account:

Cp =

AR =1~ (1-R)[(n-1)/(n-p-1)] &

R? decreases if there are too many regressors in the model.

We describe other model selection criteria to be used where
n is the number of observations, p is the number of model
parameters, including the intercept, o is an estimate of the
pure error variance from fitting the full model. The Akaike
Information Criterion,

AIC =nln(SSE/n) +2p (3)

and, the Baysian Information Criterion,

BIC =nIn(SSE/n) + 2(p + 2)s — 2¢* (6)

Where ¢ = no?/SSE. These criteria represent various
approaches for balancing model accuracy with parsimony. The
recommendation is to use the adjusted R-squared value.

Our final goal is to estimate a regression function f(X;, )
that most closely fits Y; the wood density data; X; is the set of
selected fire characteristics and 3 are the parameter estimates.
That is,

Y = f(Xi, B) + e (7

e; are random error term assumed to be normally distributed
with zero mean and variance o2. For further details around
regression steps we refer to [17].

III. DATA PRESENTATION AND ANALYSIS

Table I presents the values for wood density which ranged
from 0.39 to 0.97gem™1, ignition time [3.00-10.00(s)],
flame propagation rate (0.15-0.27c¢ms™!), flame duration
[12.00-39.00(s)], afterglow time [70.00-267(s)], ash formation
(0.19-2.38%) and limiting oxygen index (26.00-30.49%). The
means and the standard deviations of the data are 0.593 (SD
4+ 0.18441), 5.333 (SD + 2.28869), 0.193 (SD + 0.04317),
27.800 (SD =+ 10.90347), 177.200 (SD =+ 48.17261), 1.041
(SD £ 0.75497) and 28.03267 (SD + 1.47684) for WD, IT,
FPR, FD, AGT, AF and LOI respectively (Table II)

The Pearson Correlation Coefficient was used to check the
association between wood density and fire properties. At 5%
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TABLE I

Simple Statistics of WD and Fire Properties of Wood
Label Variable N Mean Std Dev Minimum Maximum
WD (gem™T) Wood Density 15 0.593 0.1844 0.39 0.97
1T (s) Ignition Time 15 5.333 2.2887 3.00 10.00
FPR (ems™1) Flame Propagation Rate 15 0.193 0.0432 0.15 0.27
FD (s) Flame Duration 15 27.800 10.9035 12.00 56.00
AGT (s) Afterglow Time 15 177.200 48.1726 70.00 267.00
AF (%) Ash Formation 15 1.041 0.7550 0.19 2.38
LOI (%) Limiting Oxygen Index 15 28.033 1.4768 26.00 30.49

level of significance, we note significant positive correlation
between wood density and ignition time (p = 0.75932, P-
value = 0.001); wood density and limiting oxygen index (p
= 0.63428, P-value = 0.0111). That means that the value
of wood density either rises or falls with ignition time and
limiting oxygen index. Further we note a significant negative
correlation between wood density and flame propagation rate
(p = -0.79857, P-value = 0.0004). The interpretation is that
the value of wood density decreases with the increasing value
of flame propagation rate and vice versa. Ignition time is seen
to have negative association with flame propagation rate (p
= -0.66749, P-value = 0.0066) and positive association with
limiting oxygen index (p = 0.56755, P-value = 0.0273). These
results are displayed in Table III.

TABLE III
Pearson Correlation Coefficient of the Combustion data,
N = 15, Prob > |r| under HO: Rho=0

WD T FPR FD AGT AF LOI
WD 1 0.7593 10.7986  -0.1681 0.1036 04515 0.6343
(0.0010)  (0.0004)  (0.5493)  (0.7134)  (0.0912)  (0.0111)
T 1 0.6675  -0.1574  -0.2015  -0.3399  0.5676
0.0066)  (0.5753)  (0.4715)  (0.2151)  (0.0273)
FPR 1 201961 035589 04183 03651
(0.4838)  (0.1930)  (0.1207)  (0.1808)
FD 1 20.2550  -0.1520  -0.4251
(0.3590)  (0.5886)  (0.1142)
AGT 1 0.1747 03714
(05335 (0.1729)
AF 1 -0.2829
(0.3069)
LOI 1

In other to gain insight to the analysis variables, the SAS
procedure PROC FACTOR was employed using PCA as
default option. Table IV shows the resulting eigenvalues of
the correlation matrix presented in Table III. The eigenvalues
corresponding to the principal components (eigenvectors) are
arranged according to the proportion of variation of data
explained by each. The first principal component explains
approximately 36% while the second principal component
explains approximately 25% of the total variability and so
on. The cumulative variability explained by the first three
principal components is approximately 80%. The analysis
suggests that the dimensionality can be reduced to three factors
with 2.549, 1.745 and 1.277 variabilities explained by each
factor respectively.

1) Model Selection: The regression step is used with the
options R-square, Mallow’s C),, Akaike information criteria
(AIC) and Bayesian information criteria (BIC) to select the
most parsimonious model for wood density. We present these
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TABLE IV
Eigenvalues of the Correlation Matrix:
Total = 7 Average = 1

Eigenvalue Difference Proportion Cumulative|
1 2.54929441 0.80467788 0.3642 0.3642
2 1.74461653 0.46761800 0.2492 0.6134
3 1.27699853 0.56212162 0.1824 0.7958
4 0.71487691 0.33686207 0.1021 0.8980
5 0.37801484 0.15493955 0.0540 0.9520
6 0.22307530 0.10995183 0.0319 0.9838
7 0.11312347 0.0162 1.0000

in Table V. Model 1 with only FPR as the regressor shows
an R-sq = 0.6377. Model 2 with FPR and LOI as regressors
indicated R-sq = 0.7732 and model 3 having FPR, AGT and
LOI as regressors indicate R-sq = 0.8678.

This is the most parsimonious model for wood density as
beyond that point, the R-sq shows no significant changes. The
AIC score rewards models that achieve a high goodness-of-
fit score and penalizes them if they become overly complex.
By itself, the AIC score is not of much use unless it is
compared with the AIC score of a competing model. When
fitting models, it is possible to increase the likelihood by
adding parameters but doing so may result in over-fitting. The
BIC resolves this problem by introducing a penalty term for
the number of parameters in the model. The penalty term is
larger in BIC than in AIC. BIC has been widely used for
model identification in linear regression. Note that model 3
also has the lowest Mallow’s C,,- statistics (value = 0.8637)
and beyond that all models show increasing values of AIC and
BIC. The parameter estimates for each model is shown to the
right panel of the table.

TABLE V
Model Selection Method

AIC BIC

INT. IT FPR FD AGT  AF Lo1

0.6377
0.7732
0.8678
0.8751
0.8797
0.8807

10.555
4.492
0.864
2.429
4.155
6.099

-62.983
-68.010
-74.108
-72.961
-71.526
-69.642

-62.384
-65.365
-66.495
-62.847
-58.772
-54.539

1.250

-0.253
-0.748
-0.659
-0.623
-0.478

-3.411 .
0.0494
0.0613
0.0544
0.0530
0.0495

-2.794
-3.166
-2.843
-2.728
-2.785

0.0013 .
0.0012
0.0012
0.0012

0011
0011
0010

00185
~0.0204

o v A W

20,0007

2) Final Model: Using the information obtained from
model selection we fitted the wood density to FPR, AGT and
LOI using PROC REG is SAS. The resulting estimated model
for WD has F-Value = 24.08 (P-value < 0.0001). At 5% level,
we can reject the null hypothesis that the regression parameters
are zero. Hence,

WD = —0.7479—-3.1663 x F PR+0.0013x AGT+0.0613x LOI
®)
This model has R-Square = 87% and Adj R-Square = 83%.
Graphical checks for lack of fit (Figure 1) suggest no clear
patterns. We conclude that our model fits well the data. This
is also evident from the graph of the empirical versus the
predicted values (Figure 2) which shows a narrow confidence
interval.
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Fig. 1. Diagnostic checks for lack of fit
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The residual plots do not show any clear pattern. The
histogram shows that the error terms are normally dis-
tributed. R-square=0.8678 and very close to the Adjusted R-
square=0.8577. Goodness of model fit can be trusted.

Fig. 2. Plot of empirical versus fitted Wood density data
Predictions and Residuals for WD
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The Empirical versus the predicted WD data with 95%
confidence limits in hash and 95% prediction limits in dotted
lines. Beneath is the plot of residual versus predicted WD
indicating no clear pattern.

IV. DI1SCUSSION AND CONCLUSION

This study investigated the relationship between wood den-
sity and fire properties of fifteen Nigerian woods relying on
data published in [11] and [14]. The method of principal
components: Eigenvalues and Eigenvectors as well as the
linear regression method both available in Statistical Analysis
Software, version 9.4, were utilized.

The Pearson Correlation approach indicate significant pos-
itive correlation between wood density (WD) and ignition
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time (IT) and limiting oxygen index (LOI). That is to say
that WD either rises or falls with both quantities. There is
a significant negative correlation between wood density and
flame propagation rate (FPR). It implies that wood density
decreases with an increasing value of FPR and vice versa.
These strong associations, otherwise called multi-collinearity,
imply that one predictor variable can be linearly predicted
from the others with a substantial degree of accuracy.

The principal components Analysis (PCA) suggest that the
first three principal components explain approximately 80%
of the data variability. This being a strong indication that
the model dimensionality can be reduced to three regressors
only. The regression step is used with the options R-square,
Mallow’s C),, Akaike information criteria (AIC) and Bayesian
information criteria (BIC) to select the most parsimonious
model for wood density. Model selection reveal that the most
parsimonious model for wood density has FPR, AGT and LOI
as regressors with [?,, = 0.8678.

In conclusion, wood density relates well with flame prop-
agation rate, afterglow time and limiting oxygen index while
ignition time, flame duration and ash formation do not show
any straightforward relationship with wood density and there-
fore constitute noise. Okafor et al. (2020a) reported strong
association between wood density and ignition time, flame
propagation rate and limiting oxygen index in a pairwise-wise
comparison. However, we note that ignition time disappeared
in the final model due to multi-collinearity with flame propa-
gation rate and limiting oxygen index.
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