
 EJERS, European Journal of Engineering Research and Science

Vol. 5, No. 12, December 2020

DOI: http://dx.doi.org/10.24018/ejers.2020.5.12.2284 Vol 5 | Issue 12 | December 2020 107

Abstract — Now the far-fetched reality has become true

with the prominence of IOT (Internet of Things) technology.

Various individual devices get connected with each other to

establish communication. These devices are built on a

microcontroller which is responsible to receive and send

information. These devices are very small and appropriate

Operating Systems are required on the basis of particular

device architecture, scheduling methods, network technologies

and programming models. IOT Operating Systems are

enormously facilitating low constrained devices to deliver their

throughput efficiently in a timely manner. This concept helped

a lot in emergence of IOT, which has translated our physical

world into a digital cyber world. IOT devices consumes less

power, less memory and less energy, therefore they need

appropriate Operating Systems to act as interfaces. Low

constrained Operating Systems are especially designed to

provide support to these low constrained devices. Many

researches have been conducted to discuss Operating Systems

for these low constrained devices. In this study, capsulization of

Internet of Things and its building blocks, architecture of IOT

Operating System and network stack architecture of state-of -

the art IOT Operating Systems such as Contiki, Tiny OS, Free

RTOS, RIOT, Zephyr and Mbed OS is investigated. Moreover

this, detailed overview of related work is presented with the

comparative analysis of this study with the existing surveys. In

addition, open research areas are discussed with

recommendations.

Index Terms — Internet of Things, Low Constrained

Devices, Operating System, RIOT, Zephyr, Mbed OS.

I. INTRODUCTION

Parallel with the expansion of Internet of Things, network

of connected electronic devices is expanding across the

globe. To facilitate users, these devices exchange data and

information and provide value creation which is going to

embrace proximate level of digitization.

Acclivity in wireless technologies has increased demand

of IOT devices. These IOT devices interconnected with each

other, utilizing embedded sensing and communication. The

word ‘things’ in IOT is referred to as endpoints (devices

and things). IOT is the connection of these endpoints

through uniquely identifiable IP addresses. Moreover this,

IOT bridges gap between virtual and physical realities by

acting as an additional layer of information. In several

industries and companies, IOT has created a tangible value.

Therefore, by 2050 surge of IOT devices is expected.

Published on December 28, 2020.

Sumera Rounaq, Bahria University Karachi Campus, Pakistan.

(e-mail: sumaira.rounaq gmail.com)
Muhammad Iqbal, Bahria University Karachi Campus, Pakistan.

(e-mail: miqbal.bukc bahria.edu.pk)

According to IOT Analytics [2], in 2016, more than 4.7

billion devices were connected to the internet and by 2025 it

is estimated that there will be birth of more than 21 billion

devices [1]. As per [2], Fig. 1 depicts the expected growth of

global number of connected IOT devices by 2025.

Fig. 1. Growth of global number of connected IOT devices by 2025.

II. CONTRIBUTION AND METHODOLOGY

A. Contribution to this Survey

As compare to recent review papers, this survey is

summarized as follows:

• This survey presents contribution, structure and

selected studies relevant to this study.

• We present discussion on IOT building components

and their architecture.

• Compare to previous review in the same context we

cover Contiki, Tiny OS, Free RTOS, RIOT,

Zephyr, Mbed OS for low constrained devices.

• We review IOT taxonomy along with discussion of

key features and characteristics of major IOT OS.

• We also contribute towards Network Stack

Architecture and also provide a detailed summary

of existing surveys.

• Open issues are also discussed to facilitate future

research studies.

B. Structure of this Survey

In this paper, we encapsulate details of low-end device

IOT Operating Systems in frame of reference of

architecture, scheduler, programming model, programming

language and network stack architecture. We covered

Contiki, Tiny OS, Free RTOS, RIOT, Zephyr and Mbed OS.

The contribution of this paper is structured as follows:

• It presents a detailed review of previous review

studies in the section of Related work.
@

@

Vision, Challenges and Future Perspectives of Low

Constrained Devices IOT Operating Systems: A

Systematic Mapping Review

Sumera Rounaq, Muhammad Iqbal

 EJERS, European Journal of Engineering Research and Science

Vol. 5, No. 12, December 2020

DOI: http://dx.doi.org/10.24018/ejers.2020.5.12.2284 Vol 5 | Issue 12 | December 2020 108

• It discusses network stack architecture with

appropriate illustrations.

• It covers overview of IOT building blocks,

components and its architecture.

Whole paper is structured as follows:

Section I provides introduction; Section II gives

contribution and structure of this survey. Table 1 presents

selected studies to define the inclusion criteria of our

systematic mapping. Section III provides overview of IOT,

building components, IOT taxonomy and IOT OS

architectures. Next is Section IV which defines IOT

Operating Systems used for this study. Section V focuses on

architecture types and features of IOT Operating Systems.

Section VI presents Network Stack architecture and Section

VII gives comprehensive review of state of art review

studies. Comparative analysis of this review with the

existing studies is also discussed in this section. Section VIII

is dedicated to open research issues followed by Section IX

which is comprised of conclusion.

C. Studies selected for this Survey

Following are the studies taken into consideration to

complete this survey. Table 1 presents peer review papers

along with year of publication and authors.

TABLE 1: SELECTED STUDIES

S. No Year Authors Title

1 2018 Kumar et al. [3]
The Internet of Things: Insights into the building blocks, component interactions, and

architecture layers

2 2018 E. Baccelli, et al. [4]
RIOT: an open-source operating system for low-end embedded

devices in the IoT

3 2020 Bansal, et al. [5]
IoT Ecosystem: A Survey on Devices, Gateways, Operating Systems, Middleware and

Communication

4 2019 Zikria, Yousaf Bin, et al. [6]
Internet of Things (IoT) operating systems management: opportunities, challenges, and

solution

5 2018 Musaddiq, Arslan, et al [7] A survey on resource management in IoT operating systems

6 2017 Sabri, et al. [8] Comparison of IoT constrained devices operating systems: A survey

7 2018 Javed, Farhana, et al. [9]
Internet of Things (IoT) operating systems support, networking technologies, applications,

and challenges: A comparative review

8 2017 Amiri-Kordestani, et al. [10] A survey on embedded open-source system software for the internet of things.

9 2019 Shammar, et al. [11] The Internet of Things (IoT): a survey of techniques, operating systems, and trends

10 2016 Chandra, et al. [12] Operating systems for internet of things: A comparative study.

11 2019 Srinidhi, et al. [13] Network optimizations in the Internet of Things: A review.

12 2015 Gaur, Pamini, et al. [14] Operating systems for IoT devices: A critical survey

13 2015 Hahm, Oliver, et al [15] Operating systems for low-end devices in the internet of things: a survey

14 2019 Silva, Miguel, et al [16] Operating Systems for Internet of Things Low-End Devices: Analysis and Benchmarking

15 2004 A. Dunkels, et al. [17] Contiki – a lightweight and flexible operating system for tiny networked sensors

16 2005 P. Levis, et al. [18] TinyOS: An operating system for sensor networks

17 2006 A. Dunkels et al. [19]
Protothreads: Simplifying event-driven programming of memory-constrained embedded

systems

18 2008 T. Alliance, et al. [20] TinyOS 2.1: Adding threads and memory protection to TinyOS

19 2012 P. Lindgren, et al. [21] Leveraging TinyOS for integration in process automation and control systems

20 2007 R. Goyette, et al. [22] An analysis and description of the inner workings of the FreeRtos kernel

21 2009 D. Déharbe, et al. [23] Formalizing FreeRTOS: First steps,” Formal Methods: Foundations and Applications

22 2014 J. F. Ferreira, et al. [24] Automated verification of the FreeRTOS scheduler in hip/sleek

23 2020 Cekerevac, Z, et al. [25] TOP SEVEN IoT OPERATING SYSTEMS IN MID-2020

III. OVERVIEW OF IOT

When it comes to no human – machine physical contact

while solving problems related to science and engineering

domain, only one name comes in our mind and that is IOT.

IOT is a revolutionary technology that is gaining popularity

by leaps and bounds. Due to advancements in network

connectivity, real world objects have liberty to establish

connectivity between them. Sharing of information is quite

feasible and these objects are identified as nodes in IOT

framework. Adding more to it, real world objects join their

hands with the sensing elements, micro controllers, internet

protocols and storage. Integration of the real-world objects

make possible all aspects of communication to accomplish

real world tasks.

A. IOT Building Components

Things, Gateways, Network Infrastructure (NI) and Cloud

Infrastructure mainly participates in the implementation of

IOT. Here, the term ‘things’ is a piece of equipment consists

of sensing, actuating, storage or processing capability.

Gateway act as an intermediate block between the things

and Cloud Infrastructure. To ensure smooth and secure flow,

Network Infrastructure (NI) comes into an action to provide

control over the information. Imbued with computing

proficiencies and information storage, Cloud Infrastructure

allows analytical and logical computing abilities. In addition

to this, IOT devices must be comprised of a Physical Layer

(PHY), an interface and an Internet Protocol (IP) address.

Table 2 presents IOT building components, Associated

devices and their features [3].

 EJERS, European Journal of Engineering Research and Science

Vol. 5, No. 12, December 2020

DOI: http://dx.doi.org/10.24018/ejers.2020.5.12.2284 Vol 5 | Issue 12 | December 2020 109

TABLE 2: IOT BUILDING COMPONENTS, ASSOCIATED DEVICES AND THEIR

FEATURES

Ref.
IOT building
components

IOT

Associated

Devices

Features

[3]

Things Sensors and

Actuators

Information collection and

communication is possible

from the objects, without any
human intervention.

Gateways - Dataflow becomes secure and

manageable.
It acts as an intermediate block

and establishes strong

connection between the things
and cloud infrastructure.

Network

Infrastructure
(NI)

Routers,

Aggregators,
Gateways

and

Repeaters

It provides control of data flow

between things and cloud
infrastructure

Cloud

Infrastructure

(CI)

Virtualized

Servers (VS)

Data Storage
Units (DSU)

It enables advanced computing

with analytical and logical

proficiencies.

B. IOT Architecture

Architecture is a skeleton that encompasses physical

components with underlined principles. Effective IOT

Architectures ensures best, fast, and reliable convergence of

information technology. Different researchers have been

proposed different architectures. Among those three-layer

architecture is the basic one which consists of three layers -

Perception Layer, Network Layer and Application Layer.

Table 3-6 presents layers and their functionalities of three-

layer architecture, five-layer architecture, Middleware

Architecture and Service Oriented based Architecture.

TABLE 3: THREE LAYER ARCHITECTURE

Layers Functions

Perception Layer
It is the ground layer and it deals with

sensors and actuators.

Network Layer
It deals with the transmission and

processing of information.

Application Layer

It ties to facilitate user with the application

specific services. It is responsible to define

various applications in which deployment of
Internet of Things could be done.

TABLE 4: FIVE LAYER ARCHITECTURE

Layers Functions

Perception Layer
It is the ground layer and it deals with

sensors and actuators.

Transport Layer

It takes data from perception layer and
transfers it to the processing layer through

various mediums such as LAN, 3G, NFC,

RFID and Blue tooth.

Processing Layer

It is responsible to take data from transport

layer and then it stores, analyze and process

huge amount of data. It provides services to
subsequent layers and also manage services

related to databases, big data and cloud

computing.

Middleware Layer
It manages complete system and flow of

data.

Application Layer
It is responsible to give interface to the user.
It also presents final view of IOT.

TABLE 5: MIDDLE WARE ARCHITECTURE

Layers Functions

Perception, Access, and Edge

Layer

These layers deal with actuators and sensors.

Backbone Network Layer
It presents virtualized plane which consist of

cloud and servers.

Middleware Layer

It is responsible to take data from transport

layer and then it stores, analyze and process
huge amount of data. It provides services to

subsequent layers and also manage services

related to databases, big data and cloud
computing.

Coordination and Application

Layer

These layers present application plane which

provides interface to the user.

TABLE 6: SERVICE ORIENTED BASED ARCHITECTURE

Layers Functions

Enterprise Layer

It manages to communicate with business

processes sub-layer for Application

Integration.
It also communicates with Service

Discovery, Service Election and Service

Orchestration Layer.

Service Discovery, Selection and

Orchestration Layer

These layers communicate with IOT

Services, Cloud of Things and Cloud.

It maintains services and interrelationships between services. Each service

is responsible to initiate messages from a process or service.

Fig. 2. IOT Architectures of Three Layer, Middle ware, Service Oriented

and Five-layer Architectures.

C. IOT Taxonomy

IOT taxonomy is a way in which devices are composed to

deliver their specific functionalities. In IOT taxonomy, we

discuss those layers which are always supposed to be a part

of IOT ecosystem. We begin our discussion with perception

layer, which is composed of sensors and actuators, where

sensors are responsible to collect data while actuators

perform actions on that data. These sensors and actuators are

further categorized as low-end, middle end and high-end

devices. Sensors, actuators, and motes come under the

category of low constrained IOT devices. Constrained

technologies are deployed on data preprocessing layer. At

this layer, there are some security features which filter the

data before processing it further to the middleware.

IOT taxonomy defines IOT ecosystem and IOT

ecosystem is divided in to six elements. Starting with IOT

devices which exist in all layers of IOT architecture can be

divided into open source and proprietary IOT devices. IOT

devices have limited capability in terms of memory, power,

and storage. IOT gateways mediate between sensing

networks and high end IOT devices. Gateways are

 EJERS, European Journal of Engineering Research and Science

Vol. 5, No. 12, December 2020

DOI: http://dx.doi.org/10.24018/ejers.2020.5.12.2284 Vol 5 | Issue 12 | December 2020 110

responsible for collection of data from different sensors and

then send data for high level processing.

Due to low constrained nature, IOT devices require

efficient communication protocol to establish a network of

devices. IOT devices cannot connect directly to the internet

through IP stack because IP stack requires more power and

here low power technologies like WSN, Bluetooth, Zigbee

and WIFI came into existence. Fig. 3 presents elements of

IOT.

Fig. 3. IOT Elements.

IV. MAJOR IOT OPERATING SYSTEMS

To make IOT application efficient, reliable, and scalable,

an Operating system plays a vital role. IOT OS can be

categorized as High-End and Low-End Operating Systems.

High End OS operate on devices with single board systems

for example: Raspberry pi and on the other hand Low End

IOT OS acts as an interface for small board with constrained

resources for example Arduino. High End and Low-End OS

are further classified into Linux based and non-Linux based

category. Fig. 4 presents categorization of IOT Operating

System.

Fig. 4. Categorization of IOT Operating Systems.

A. Contiki

It is best suitable for low constrained devices. It was

created by Adam Dunkels in 2002 and it was released under

license of BSD as an open-source software. It supports light

weight preemptive scheduling, and it is considered as most

appropriate OS for low constrained devices due to its

TCP/IP stack. It is developed with a modular architecture

and it is written in C language. Hardware devices that are

low constrained in terms of memory, power and

communication bandwidth mostly go for Contiki OS.

Moreover this, Contiki OS works on three network stack

protocols, the ulP TCP/IP stack, which provides IPV4

networking, the ulPV6 stack, which provides IPV6

networking, and the Rime stack, which is comprised of light

weight networking protocols especially designed for low

power wireless networks.

B. Tiny OS

It is mainly aim for low power devices operate in wireless

sensor networks (WSNs), ubiquitous computing, building

automation and smart meters. It is written in nesC, which is

a dialect of C programming language. It is an open-source

software, and it was released under the license of BSD. Tiny

OS provides interface to common abstractions like packet

communication, routers, sensors, actuators, and storage.

C. RIOT

With a focus on low constrained devices, RIOT can be

considered as a good choice. RIOT is developed by FU

Berlin. It has micro kernel architecture, and it is written in C

and C++. Its programming model is of Hybrid nature and it

supports 6LoWPAN and real time scheduling.

D. RIOT

It is based on microkernel architecture and it is a small

operating system for low constrained IOT devices. It is

developed by Intel subsidiary wind driver. Its programming

model supports multithreading, preemptive and non-

preemptive scheduling. It has been developed in C and C++

programming language. It supports Blue tooth Low Energy

(BLE) 5.0 because it provides network stack support with

multiple protocols.

 EJERS, European Journal of Engineering Research and Science

Vol. 5, No. 12, December 2020

DOI: http://dx.doi.org/10.24018/ejers.2020.5.12.2284 Vol 5 | Issue 12 | December 2020 111

E. Mbed OS

It is based on monolithic kernel and it provides support

for preemptive scheduling. It has written in C and C++

programming language. It is developed by ARM with the

focus on low- constrained devices. It supports

multithreading, 6LoWPAN, BLE, WiFi, Near Field

Communication (NFC) and Radio Frequency Identification

(RFID). Recently, it is considered as an epicenter to IOT

research and development due to its multifaceted features.

F. Free RTOS

It is based on microkernel architecture and it provides

support for preemptive priority based and cooperative

scheduler. Its programming model features multithreading,

mutexes and semaphores. It is written in C language and it

also possesses set of assembly functions. It is built in tickles

idle implementation. It uses Idle task hook which allows

power saving and due to this nature, it can be considered for

low powered IOT devices.

V. ARCHITECTURE TYPES AND FEATURES OF IOT

OPERATING SYSTEMS

Categorization of Architecture of IOT Operating System

is defined as follows:

TABLE 7: ARCHITECTURE TYPES

Architecture type Features

Monolithic

• All processes run in kernel space.

• Its faster in execution.

• Easy to code this type of architecture.

• Difficult to modify.

Microkernel

• Core Operating System services like

scheduling, inter process

communication and synchronization

resides in kernel address space.

• User services reside in user address

space while OS core services reside in
kernel address space.

• Due to plugin availability, it provides

flexibility.

• Modification is easy.

Vm architecture

• Provide high level of portability.

• Extensibility is high.

• It is slow in execution.

Modular

architecture

• Provides support for adding and

replacing of components dynamically.

• Each module presents separate

functionality.

Layered architecture

• Easy to operate and handle.

• It is designed for specific requirement.

• Not flexible in nature.

A. Key features of IOT OS

Table 8 presents Key features of major IOT Operating

Systems.

TABLE 8: KEY FEATURES OF IOT OS

Operating

System
Architecture Scheduler

Programming

Model

Programming

Language

IOT

Devices
OS Type

Ram

(KB)

Rom

(KB)

TINYOS Monolithic
Non-preemptive

FIFO

Event-driven

concurrency
NesC Low

Non-

Linux
10 4–8

CONTIKI Modular
Preemptive

FIFO

Multithreading
and event driven

C Low
Non-
Linux

2 40

RIOT Microkernel
Preemptive

priority based
Hybrid C Low

Non-

Linux
1.5 5

FREERTOS Microkernel

Preemptive

priority based

and cooperative
scheduler

Multiple threads,
mutexes,

semaphore

C and
assembly

functions

Low
Non-

Linux
10 12

ZEPHYR Monolithic

non-preemptive

and preemptive
scheduling

Multithreading C Low
Non-

Linux
2 to 8 50

MBED OS Monolithic preemptive Multithreading C and C++ Low
Non-

Linux
4 16

VI. NETWORK STACK ARCHITECTURE OF IOT OS

A. Zephyr

Native Network stack consists of layers which provide

specific support according to their own functionalities.

These layers include:

NETWORK APPLICATION:

• This layer communicates with the provided

application-level protocols for example CoAP,

LWM2M, MQTT.

• This layer may access BSD Socket AI for network

connection.

• This layer is responsible of data transmission and

managing connections.

• It can also use network management API for the

configuration of network and setting network link

options.

• This layer sets IP address by using network

interface API.

NETWORK PROTOCOLS:

• Provide implementation of application-level

network protocols like CoAP, LWM2M and

MQTT etc.

• It also provides support for core network protocols

like IPV6, IPV4, UDP, TCP etc.

NETWORK INTERFACE ABSTRACTION:

It provides support that is common for all network like

setting network interface down.

L2 NETWORK TECHNOLOGIES:

It implements API that is responsible for data

communication to and from a device. These include

Ethernet, Bluetooth and CANBUS etc.

NETWORK DEVICE DRIVERS:

Transmission of data packets over the net is taken care by

low level device drivers.

 EJERS, European Journal of Engineering Research and Science

Vol. 5, No. 12, December 2020

DOI: http://dx.doi.org/10.24018/ejers.2020.5.12.2284 Vol 5 | Issue 12 | December 2020 112

B. Contiki

NETWORK STACKS:

It is comprised of three network stacks.

1.IPV6

2. IPV4

3. Rime

NETWORK LAYERS:

There are four layers.

1.Network layer

2. MAC (Medium Access Control) layer

3. RDC (Radio Duty Cycling) Layer

4. Radio Layer

NETWORK LAYER:

It is comprised of upper IPV6 layer and the lower

adaptation layer.

MAC layer:

It is the simplest layer in IOT/IP stack. In case of any

traffic, it helps in avoid collisions. It monitors the medium

before sending and holds its operations when someone else

is sending. This layer depends on RDC layer.

RDC (Radio Duty Cycling):

It provides facility of energy saving by keeping its radio

transceiver off.

Contiki supports three cycling mechanisms: Contiki

MAC, X-MAC, LPP (Low-Power Probing). These

mechanisms are based on the principles of low power

consumption and better power efficiency.

RADIO LAYER:

It is the ground layer in the Contiki Net Stack. Here

interrupt handlers are responsible to fetch data. The input

data is read into the buffer and then polling process sent the

data to upper layers.

Fig. 5. Network Stack of Zephyr OS.

Fig. 6. Network Stack of Contiki OS.

C. Mbed OS

Network Stack of Mbed Os is divided in to three layers:

Transport Layer

Network Layer

Data link Layer

All IP connectivity methods shares Socket API. Socket

API provides portability among various connectivity

methods. Socket API relates to the transport layer and it

supports TCP and UDP protocols. Network Stack layer

supports IPV4 and IPV6. Data link relates to Network driver

and it supports Ethernet, WiFi, Cellular and IEEE 802.15.4

drivers.

Fig. 7. Network Stack of Mbed OS.

D. RIOT

It is very flexible as any network can be integrated in its

network architecture. It provides two interfaces: Application

programming interface and the device driver API netdev

[26]. Network stack architecture of RIOT is composed of six

layers. Network layer is loosely coupled with the hardware

layer. Communication between Network Layer and

hardware layer is established by means of netdev API.

Application layer communicates with the network stack by

means of Sock API. Separate thread is assigned to each

device driver. Driver layer provides implementation of radio

devices.

Fig. 8. Network Stack of RIOT OS.

 EJERS, European Journal of Engineering Research and Science

Vol. 5, No. 12, December 2020

DOI: http://dx.doi.org/10.24018/ejers.2020.5.12.2284 Vol 5 | Issue 12 | December 2020 113

E. Tiny OS

Prime component of Tiny OS in communication is Active

message. Active message is an extensively used protocol in

parallel computing where each message consists of an

identifier which is user handler name. The handler function

is responsible to invoke on the target node using user level

handler name to pass the active message. This mechanism

give rise to event driven communication between nodes.

F. Free OS

It relies on third party tools to implement MAC layer. For

example, IoT LAB. In addition to this, TCP and UDP

operate as transport protocols. Free RTOS UDP Protocol is

mainly aim for low constrained devices as it provides socket

with compact code size. On the other hand, Free RTOS TCP

is based on open-source stack which provides Ethernet

based stack. TCP/IP protocol is best suitable for low

constrained devices because it is based on IwIP. IwIP is

mostly used in embedded systems where less resource usage

is in focus. Network stack implementation of IwIP is mainly

aim for systems which have 10kb of RAM and 40kb of

ROM.

VII. RELATED WORK

By the passage of time Operating Systems for low

constrained devices have emerged as predominant Operating

Systems. This section discusses literature of previous studies

and presents comparative analysis of this study with the

existing surveys. Table 9 presents comparative analysis of

this study with the existing surveys.

VIII. OPEN RESEARCH ISSUES AND RECOMMENDATIONS

A. Small Memory Footprint

To enhance the functionalities of low constrained devices

more research is required in the area of small memory

footprint. IOT devices operate on minimum RAM and ROM

which contains few kilobytes. Hence, the core characteristic

of low constrained IOT devices is to minimize the code size

to ensure minimum memory utilization.

B. Less Energy Consumption

Sustenance in battery life of IOT devices is a key factor to

reduce energy consumption. Designing of more efficient

network protocols is highly required to ensure prolong

battery life. In addition to this, more effort is required to

manage hardware features in such an efficient manner which

could result in less power consumption.

C. Reliability of IOT Devices

Another research direction led us to the reliability factor

of IOT devices. While designing IOT complex architectures,

OS reliability should be ensured by focusing on micro

kernel architecture, memory protection units and static code

analysis etc.

D. Scheduling Model

Sometimes scheduling model hit processor’s performance

by affecting system’s energy and efficiency. Constraints

during scheduling, affect processor’s performance and due

to this reason IOT Operating Systems are not able to

perform up to the mark.

E. Runtime Behavior of RTOS

Extensive research is required to deal with complex run

time behavior of RTOS task. In a complex IOT system,

proper task priorities and processor shared timings are

required. Hence, while implementing RTOS special care

should be taken because in case of RTOS predicting real

time behavior is very difficult. Tasks may get failed or may

result in delay during execution and this low point of RTOS

Operating System cannot be tolerated while implementing

time critical applications.

TABLE 9: COMPARATIVE ANALYSIS OF THIS STUDY WITH THE EXISTING SURVEYS

Discussed Aspects
This Study Musaddiq, Arslan, et al. [7] Bansal, et al. [5] Javed, Farhana, et al. [9]

T C R F Z M T C R F Z M T C R F Z M T C R F Z M

IOT OVERVIEW
✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

ARCHITECTURE
✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

TAXONOMY
✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

KEY

CHARACTERISTICS

AND FEATURES

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

IOT DEVICES
✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

PROGRAMMING MODEL

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

SCHEDULING MODEL

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

MEMORY

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

NETWORK STACK
ARCHITECTURES

✓

✓

✓

✓

✓

✓

✓

✓

✓

C: Contiki, T: TinyOS, F: FreeRTOS, R:RIOT, Z:Zephyr, M:MbedOS.

 EJERS, European Journal of Engineering Research and Science

Vol. 5, No. 12, December 2020

DOI: http://dx.doi.org/10.24018/ejers.2020.5.12.2284 Vol 5 | Issue 12 | December 2020 114

TABLE 10: CONTRIBUTIONS AND FUTURE DIRECTIONS OF EXISTING SURVEYS

Ref.
Discussed IOT

Operating Systems
Discussed aspects Future directions

[6] TinyOS, Contiki, RIOT,

Zephyr, MbedOS and

Brillo

In this paper, overview of different IoT Operating

systems, supported hardware, and future research

directions are presented.
Moreover this, this study provides overview of the

previous literature papers in Special Issue on IoT OS

management: opportunities, challenges, and solution.
Finally, this study concluded the whole survey.

• Future work should be focused on efficient techniques to

acquire the acute motes of synchronization.

• RDC (Radio Duty Cycling) can be another direction of

research along with motes synchronization to work on.

• More work is needed to achieve accuracy in execution of

critical tasks of the IOT motes to enhance real time

capabilities.

• Critical systems such as health care, smart home, smart

city is the flavor of time and their security is still a
question mark.

[7] Contiki, TinyOS, and

FreeRTOS,

Different aspects of resource management

including process management, memory management,
energy management, communication

management, and file management are investigated, and

their advantages and disadvantages are presented.

• Efficient mechanism is required to utilize the minimum

memory.

• Reliability of IOT devices requires more research.

• Real time operating systems and execution of tasks

without delay in real time is a great challenge.

• Scheduling model constraints, limitations in network

buffer management and programming model could be

considered as future research direction.

• More operating systems need to be explored for future

research such as Zephyr, RIOT, Mbed OS.

[8] FreeRTOS, Mbed,
Contiki, TinyOS and

RIOT

This study is mainly focused on comparative analysis of
the most recent IOT operating systems for low

constrained IOT devices. This study discussed

architecture, scheduling, real-time capabilities,
programming model, memory

footprint, network connectivity, hardware support and
energy

efficiency.

• IOT operating Systems are still deficient in context of

security.

• Reduction in Operating System services is required in

light Kernel architecture and major focus should be

drawn towards small memory footprint.

• Execution of tasks and real time compatibility should be

equated in order to achieve accuracy.

[9] Contiki, TinyOS, RIOT,
Nano-RK, LiteOS,

MantisOS,ROS OS,

RETOS

This study addressed IOT operating Systems constraints
with respect to their architecture, programming model,

schedular algorithms, networking and communication

protocols. This study presented requirements and
shortcomings in development. In addition to this, it also

contributed towards summary of related work and

detailed case studies are also illustrated.

• IOT operating Systems are still deficient in context of

security.

• Reliable Communication, Bandwidth, Interoperability

need to be addressed in detail for future challenges.

• Small memory foot print needs to be addressed to

facilitate low constrained IOT devices.

[10] Android Things, Mbed

OS, Contiki OS, RIOT

OS, Zephyr

This study identified key parameters that needs to be

focused on while selecting open-source project. Number

of selected studies have been discussed in this survey to
explore open-source system software projects and

frameworks.

• Security and Privacy are still open to research.

• Significant research is required to stable communication

protocols.

• Security concerns need to be monitored such as bug

fixes or updates and hardware constraints.

[11] Tiny OS, Contiki OS,

FreeRTOS, and RIOT.

This study contributes in the dimensions of over view and

evolution of IOT. Architectures of major IOT Operating
systems are discussed. In addition to this, challenges of

IOT Operating Systems and open research issues are

discussed extensively.

• Small memory foot print is a big challenge to address

while proposing new architecture for IOT.

• Challenges in real time operating systems defines new

direction for research.

• Execution of tasks and real time compatibility should be

equated in order to achieve accuracy.
[12] Contiki

TinyOS

mbed OS
Real Time Operating

System (RTOS)

A comprehensive overview of IOT OS was discussed in

this paper. Memory, Programmability Support, Network

Protocols, Architecture, Schedular, Modularity Support is
discussed in view of major OS.

• Scheduling model constraints, limitations in network

buffer management and programming model could be

considered as future research direction.

• IOT operating Systems are still deficient in context of

security.

[14] Contiki, RIOT, TinyOS,

LiteOS, FreeRTOS,

Mantis OS, Nano-RK,
SOS, NutOS, uC/OS-

III, uClinux

This explanatory paper presents content on prevalent IOT

operating systems. This study did comparative analysis

and illustrate findings for future studies. N/A

[5] TinyOS, Contiki, RIOT,
LiteOS, FreeRTOS,

Mynewt, uClinux,

Raspbian, Android
thing

This study serves to elucidate taxonomy of IOT
ecosystem. Many technical aspects are illustrated such as

architectures, devices, communication protocols and

network stack architectures.

• IOT ecosystem is established with heterogeneous

devices that work together and allow inter device

communication. More research is required for
heterogeneity among these devices.

• Security and Privacy are still open to research.

• Scheduling model constraints, limitations in network

buffer management and programming model could be

considered as future research direction.
[15] Contiki, RIOT,

FreeRTOS .TinyOS,

OpenWSN
nuttX , eCos

 uClinux ,ChibiOS/RT

 CoOS,
nanoRK,Nut/OS

Contribution of this study lies in exegetic discussions on

specific requirements that should be fulfilled by an OS to

cater low constrained devices. Several tradeoffs have
been discussed regarding the constrains of IOT and

hardware platforms.

N/A

 EJERS, European Journal of Engineering Research and Science

Vol. 5, No. 12, December 2020

DOI: http://dx.doi.org/10.24018/ejers.2020.5.12.2284 Vol 5 | Issue 12 | December 2020 115

IX. CONCLUSION

This paper provides an overview of IOT and its building

components. This paper gives insights into architecture,

programming model, schedular and network stack

architecture of different IOT Operating Systems. The

contributions are multifaceted. Firstly, we discussed

contribution to this survey followed by the structure of this

survey. Peer review papers are presented along with year of

publication and authors. Secondly, an overview of IOT is

presented along with IOT building components. IOT

architecture is explained along with layers and its

functionalities. In this section we discussed IOT elements

and major IOT Operating Systems for low constrained

devices with their key characteristics. Network Stack

architecture of IOT OS is also given in this section. After

this, we discussed related work and compare our work with

the previous surveys. Finally, critical research areas are

unfolded to facilitate future research studies in this domain.

ACKNOWLEDGMENT

 The author is grateful to her instructor Dr. Muhammad

Iqbal, Assistant Professor, Department of Computer

Science, Bahria University Karachi, Pakistan for his

immense support throughout this study.

REFERENCES

[1] NortonLifeLock. (2019, August 28).
https://us.norton.com/internetsecurity-iot-5-predictions-for-the-

future-of-iot.html. Retrieved from NortonLifeLock:
https://us.norton.com/

[2] Lueth, K. L. (2018, August 8). Retrieved from IOT Analytics:

https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-
of-iot-devices-now-7b/

[3] Kumar, N. M., & Mallick, P. K. (2018). The Internet of Things:

Insights into the building blocks, component interactions, and
architecture layers. Procedia computer science, 132, 109-117.

[4] Baccelli, E., Gündoğan, C., Hahm, O., Kietzmann, P., Lenders, M.

S., Petersen, H., ... & Wählisch, M. (2018). RIOT: An open-source
operating system for low-end embedded devices in the IoT. IEEE

Internet of Things Journal, 5(6), 4428-4440.

[5] Bansal, S., & Kumar, D. (2020). IoT Ecosystem: A Survey on
Devices, Gateways, Operating Systems, Middleware and

Communication. International Journal of Wireless Information

Networks, 1-25.
[6] Zikria, Y. B., Kim, S. W., Hahm, O., Afzal, M. K., & Aalsalem, M.

Y. (2019). Internet of Things (IoT) operating systems management:

opportunities, challenges, and solution.
[7] Musaddiq, A., Zikria, Y. B., Hahm, O., Yu, H., Bashir, A. K., &

Kim, S. W. (2018). A survey on resource management in IoT

operating systems. IEEE Access, 6, 8459-8482.
[8] Sabri, C., Kriaa, L., & Azzouz, S. L. (2017, October). Comparison of

IoT constrained devices operating systems: A survey. In 2017

IEEE/ACS 14th International Conference on Computer Systems and
Applications (AICCSA) (pp. 369-375). IEEE.

[9] Javed, F., Afzal, M. K., Sharif, M., & Kim, B. S. (2018). Internet of

Things (IoT) operating systems support, networking technologies,
applications, and challenges: A comparative review. IEEE

Communications Surveys & Tutorials, 20(3), 2062-2100.

[10] Amiri-Kordestani, M., & Bourdoucen, H. (2017). A survey on
embedded open source system software for the internet of things. In

Free and Open Source Software Conference (Vol. 2017).

[11] Shammar, E. A., & Zahary, A. T. (2019). The Internet of Things
(IoT): a survey of techniques, operating systems, and trends. Library

Hi Tech.

[12] Chandra, T. B., Verma, P., & Dwivedi, A. K. (2016, March).
Operating systems for internet of things: A comparative study. In

Proceedings of the Second International Conference on Information

and Communication Technology for Competitive Strategies (pp. 1-

6).

[13] Srinidhi, N. N., Kumar, S. D., & Venugopal, K. R. (2019). Network

optimizations in the Internet of Things: A review. Engineering

Science and Technology, an International Journal, 22(1), 1-21.
[14] Gaur, P., & Tahiliani, M. P. (2015, May). Operating systems for IoT

devices: A critical survey. In Proceedings of the 2015 IEEE Region

10 Symposium (pp. 33-36).
[15] Hahm, O., Baccelli, E., Petersen, H., & Tsiftes, N. (2015). Operating

systems for low-end devices in the internet of things: a survey. IEEE

Internet of Things Journal, 3(5), 720-734.
[16] Silva, M., Cerdeira, D., Pinto, S., & Gomes, T. (2019). Operating

Systems for Internet of Things Low-End Devices: Analysis and

Benchmarking. IEEE Internet of Things Journal, 6(6), 10375-10383.
[17] Dunkels, A., Gronvall, B., & Voigt, T. (2004, November). Contiki-a

lightweight and flexible operating system for tiny networked sensors.

In 29th annual IEEE international conference on local computer
networks (pp. 455-462). IEEE.

[18] Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K.,

Woo, A., ... & Culler, D. (2005). TinyOS: An operating system for

sensor networks. In Ambient intelligence (pp. 115-148). Springer,

Berlin, Heidelberg.

[19] Dunkels, A., Schmidt, O., Voigt, T., & Protothreads, M. A. (2006).
Simplifying Event-Driven Programming of Memory-Constrained

Embedded Systems In Proceedings of the Forth International
Conference on Embedded Networked Sensor Systems.

[20] Alliance, T. (2008, November). TinyOS 2.1 adding threads and

memory protection to TinyOS. In Proceedings of the 6th ACM
conference on Embedded network sensor systems (pp. 413-414).

[21] Lindgren, P., Mäkitaavola, H., Eriksson, J., & Eliasson, J. (2012,

October). Leveraging TinyOS for integration in process automation
and control systems. In IECON 2012-38th Annual Conference on

IEEE Industrial Electronics Society (pp. 5779-5785). IEEE.

[22] Goyette, R. (2007). An analysis and description of the inner
workings of the freertos kernel. Carleton University, 5.

[23] Déharbe, D., Galvão, S., & Moreira, A. M. (2009). Formalizing

FreeRTOS: First Steps, Formal Methods: Foundations and
Applications: 12th Brazilian Symposium on Formal Methods, SBMF

2009 Gramado, Brazil, August 19-21, 2009 Revised Selected Papers.

[24] Ferreira, J. F., Gherghina, C., He, G., Qin, S., & Chin, W. N. (2014).
Automated verification of the FreeRTOS scheduler in Hip/Sleek.

International Journal on Software Tools for Technology Transfer,

16(4), 381-397.
[25] Cekerevac, Z., Dvorak, Z., & Pecnik, T. TOP SEVEN IoT

OPERATING SYSTEMS IN MID-2020.

Sumera Rounaq received BS degree in Software Engineering from

UBIT, Karachi University, Pakistan. Currently, she is pursuing MS in

Computer Science from Bahria University, Karachi Campus, Pakistan. Her
research interests include IOT Operating Systems in Low end devices,

Detection of patterns using Machine Learning, Deep Learning, Natural

Language Processing and extraction and analysis of Data using Data
Science.

Dr. Muhammad Iqbal is a Senior Assistant Professor and Cluster Head

of Department of Computer Science, Bahria University, Karachi Campus,

Pakistan. He received Ph.D. degree from South West Jiao tong University,
Chengdu, China (SWJTU). He has 14 international peer-reviewed

publications on his credit.

